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What is nonlinear programming?

Nonlinear (constrained) optimisation = nonlinear programming

min f(x) subject to cg(x) =0 and cz(x) >0
xERN

e objective function f:RN — R
e constraints cg : RN — RMe (M, < N) and

cr: RV — RM



An Example

Optimisation of Transco

a high-pressure National
gas network Transmission

System

British Gas (Transco)
Oxford University
RAL




Node Equations

g1+qg—qz3—d =0

where q; flows
d; demands

d



Node Equations

In general: Ag—d=0

g1 +q—q—d =0 )
q, e linear

where q; flows e sparse

d; demands e structured
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Pipe Equations
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where p; pressures
g; flows
k; constants



Pipe Equations

Py
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pg . pf + quf.8359 —0

where p; pressures In general: A(p) + diag(kiqi) =0

i flow .
gi tows e non-linear

k; constants
e sparse

e structured



Compressor Constraints

PHhO—-—n <O p
), 4

g1 — G+ 2z1-a(pi,qi, p2,G2) >0

where p; pressures
g; flows
z; 0-1 variables
= 1 if machine is on

¢; nonlinear functions



Compressor Constraints

PHhO—-—n +——0OR
ty o

g1 — G+ 2z1-a(pi,qi, p2,G2) >0

where p; pressures

g; flows
In general:

z; 0-1 variables )
Aq + diag(z;) c(p,q) > 0

= 1 if machine is on

¢; nonlinear functions e non-linear
® sparse

e structured

0—1 variables



Other Constraints

Bounds on pressures and flows

IN
je]
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Pmin
Amin S q S Qmax

pmax

e In general: Simple bounds on variables



Many possible objectives

e maximize / minimize sum of pressures
e minimize compressor fuel cost

e minimize supply



Many possible objectives

e maximize / minimize sum of pressures
e minimize compressor fuel cost

e minimize supply

+ combinations of these



Actual Data

British Gas National Transmission System

e 199 nodes
e 196 pipes

e 21 compressors
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Actual Data

British Gas National Transmission System

e 199 nodes
e 196 pipes

e 21 compressors

Steady state problem
~ 400 variables

24-hour variable demand problem with 10 minute discretization
~ 58,000 variables

Challenge: Solve this in real time!



Motivation for Course

This problem is typical of real-world, large-scale applications:

e linear constraints

e nonlinear constraints

e simple bounds

e structure

e integer variables

e global minimum “required”

e discretization
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(Some) Other Application Areas

e minimum energy problems

e structural design problems

e traffic equilibrium models

e production scheduling problems

e portfolio selection

e parameter determination in financial markets
e hydro-electric power scheduling

e gas production models

e efficient models of alternative energy sources
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Data fitting & inverse problems

An experiment is described by the nonlinear relation
y = F(p,x)
and repeated M times to get data pairs (x;, y;)M,.

Find parameters p that best fit our observations,
M

min F(p,x;) — /|2

i, 3 F(px)
Input/Observation data  (x;,y;)M,, x e RK, y e RKo
Forward map F : R” x RK :— RKo

Parameters p € RP
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Data fitting & inverse problems

An experiment is described by the nonlinear relation
y = F(p,x)
and repeated M times to get data pairs (x;, y;)M,.

Find parameters p that best fit our observations,
M

min F(p,x)—yi>+R
pGRP§| (P, xi) — il (p)
Input/Observation data (x,-,y,-),’-\il, xi €RKIy; € RKo
Forward map F : R” x RK :— RKo
Parameters p € RP
Regularization R : RP — R,
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Examples of data fitting

e Back Propagation in Neural Networks
y = F(W7 b7 X)a

where w are weights, b are biases and (x;, y;)¥, is training data. Training = find minimizing
p = (w,b).

e Computer Vision: 3D geometry and camera pose estimation based on photographs from
multiple angles,

c P
r‘ginzz Vi,j|F(Cian) - yi,j|2-
O j=1

Here p; are 3D points. They are projected onto ith image at coordinates F(c;, pj) provided
vij = 1, i.e. the point is visible. ¢; are camera parameters.
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Optimization over function spaces

e Image processing
Given a noisy image, f : Q2 — R,
compute the denoised image v,

A
argmin 2. [ (F — ufd+ [y
ueBV(Q) 2 Ja

e Optimal control as PDE constrained optimization
u'(t) = A(p(t)) u(t),  u(0) = uo.
Find the optimal control p(t) such that at time T we are close to target state Uarget,

argmin  ||u(T) — Utarget|, -
peC([0.T])

A(p)u
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Mathematical Problem Statement

Objective function f : RN — R (smooth)

Admissible (or feasible) set
Qz{xGR"’:q(x):O7 Jj€eE, (:j(x)ZO,jEI}7
with ¢ : RV — RMAM £ = (1. M.}, T = {Me+1,..., Mot M;}

x € Q is called feasible or admissible.
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Mathematical Problem Statement

Objective function f : RN — R (smooth)

Admissible (or feasible) set
Qz{xGR"’:q(x):O7 Jj€eE, (:j(x)ZO,jEI}7
with ¢ : RV — RMAM £ = (1. M.}, T = {Me+1,..., Mot M;}

x € Q is called feasible or admissible.

X, € Q is a global minimizer of f in  if Hard unless convex! ‘
f(x.) < f(x) Vx € Q. (1)

X« € Qis a (strict) local minimizer of f in Q if 3r > 0 s.t.
f(x«) < f(x) ¥x € QN B, (x) (2)
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Problems to be Considered

Constrained optimisation

min f:RY SR
xEQCRN
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Problems to be Considered

Constrained optimisation

min f:RY SR
xEQCRN

Unconstrained optimisation

min f: RV - R
xERN

Solving simultaneous nonlinear equations

Find x, ¢ RV st. F(x,)=0 for F:RY RN
In reverse order!!
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Course Overview

e Revision: Linear Algebra & Multivariate Calculus

e Newton's Method

e Global Convergence: Line Search & Trust Region

e Quasi-Newton Methods (gradient-free)

e Optimality Conditions for Constrained Optimisation
e Penalty Methods

e Barrier Methods

e Large-Scale Optimisation
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e Christoph Ortner, Continuous Optimization, Lecture Notes, Oxford, 2009

JE Dennis & RB Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear
Equations, 1983

J Nocedal & SJ Wright, Numerical Optimization, 2006

e N.I.LM. Gould & S. Leyffer, “An introduction to algorithms for nonlinear optimization”, in
Frontiers in NA, Springer, 2003
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Other Important Informations (see also handout)

Lectures: Wednesday 10.15 1W 3.30
Thursday 11.15 CB 4.10

No lectures in week 4

Problem classes: Friday 17.15  8W 2.20

No problem classes in  weeks 1,2,4,10

e Problem sheets, handouts, Matlab codes, and other useful material/links available on the
course web page

http://www.pranavsingh.co.uk/ma40050.
e Computing in Matlab (on BUCS or own laptop/PC).

e Assignment (worth 25%) provisionally planned Mar 18-Apr 28.

19



