Numerical Optimisation and Large–Scale Systems MA40050

Pranav Singh

Academic Year 2019/20 - Semester 2

Department of Mathematical Sciences University of Bath

What is nonlinear programming?

Nonlinear (constrained) optimisation ≡ nonlinear programming

$$\min_{\mathbf{x} \in \mathbb{R}^N} f(\mathbf{x}) \ \text{ subject to } \ \mathbf{c}_{\mathcal{E}}(\mathbf{x}) = 0 \ \text{ and } \ \mathbf{c}_{\mathcal{I}}(\mathbf{x}) \geq 0$$

- objective function $f: \mathbb{R}^N \longrightarrow \mathbb{R}$
- ullet constraints $oldsymbol{c}_{\mathcal{E}}: \mathbb{R}^{N} \longrightarrow \mathbb{R}^{M_e} \; (M_e \leq N)$ and

$$\mathbf{c}_{\mathcal{I}}: \mathbb{R}^{N} \longrightarrow \mathbb{R}^{M_{i}}$$

An Example

Optimisation of a high-pressure gas network

British Gas (Transco) Oxford University RAL

Transco National Transmission System

Node Equations

$$q_1 + q_2 - q_3 - d_1 = 0$$

where q_i flows d_i demands

Node Equations

$$q_1 + q_2 - q_3 - d_1 = 0$$

where q_i flows d_i demands

In general: Aq - d = 0

- linear
- sparse
- structured

Pipe Equations

$$p_2^2 - p_1^2 + k_1 q_1^{2.8359} = 0$$

where p_i pressures

 q_i flows

 k_i constants

Pipe Equations

$$p_2^2 - p_1^2 + k_1 q_1^{2.8359} = 0$$

where p_i pressures

 q_i flows

ki constants

In general: $A(\mathbf{p}) + \operatorname{diag}(k_i q_i) = \mathbf{0}$

- non-linear
- sparse
- structured

Compressor Constraints

$$q_1-q_2+z_1\cdot c_1(p_1,q_1,p_2,q_2)\geq 0$$

where p_i pressures

 q_i flows

 z_i 0–1 variables

=1 if machine is on

 c_i nonlinear functions

Compressor Constraints

$$q_1-q_2+z_1\cdot c_1(p_1,q_1,p_2,q_2)\geq 0$$

where p_i pressures

 q_i flows

 z_i 0–1 variables

= 1 if machine is on

c; nonlinear functions

In general:

$$A \mathbf{q} + \operatorname{diag}(z_i) c(\mathbf{p}, \mathbf{q}) \geq \mathbf{0}$$

- non-linear
- sparse
- structured
- 0–1 variables

Other Constraints

Bounds on pressures and flows

$$p_{\min} \le p \le p_{\max}$$

 $q_{\min} \le q \le q_{\max}$

• In general: Simple bounds on variables

Objectives

Many possible objectives

- maximize / minimize sum of pressures
- minimize compressor fuel cost
- minimize supply

Objectives

Many possible objectives

- maximize / minimize sum of pressures
- minimize compressor fuel cost
- minimize supply
- + combinations of these

Actual Data

British Gas National Transmission System

- 199 nodes
- 196 pipes
- 21 compressors

Actual Data

British Gas National Transmission System

- 199 nodes
- 196 pipes
- 21 compressors

Steady state problem

 \sim 400 variables

Actual Data

British Gas National Transmission System

- 199 nodes
- 196 pipes
- 21 compressors

Steady state problem

 \sim 400 variables

24-hour variable demand problem with 10 minute discretization

 \sim 58,000 variables

Challenge: Solve this in real time!

Motivation for Course

This problem is **typical** of **real-world**, **large-scale** applications:

- linear constraints
- nonlinear constraints
- simple bounds
- structure
- integer variables
- global minimum "required"
- discretization

(Some) Other Application Areas

- minimum energy problems
- structural design problems
- traffic equilibrium models
- production scheduling problems
- portfolio selection
- parameter determination in financial markets
- hydro-electric power scheduling
- gas production models
- efficient models of alternative energy sources

Data fitting & inverse problems

An experiment is described by the nonlinear relation

$$y = F(p, x)$$

and repeated M times to get data pairs $(x_i, y_i)_{i=1}^M$.

Find parameters p that best fit our observations,

$$\min_{p \in \mathbb{R}^P} \sum_{i=1}^M |F(p, x_i) - y_i|^2$$

Input/Observation data $(x_i, y_i)_{i=1}^M$, $x_i \in \mathbb{R}^{K_i}$, $y_i \in \mathbb{R}^{K_o}$

Forward map $F: \mathbb{R}^P \times \mathbb{R}^{K_l} : \to \mathbb{R}^{K_O}$

Parameters $p \in \mathbb{R}^P$

Data fitting & inverse problems

An experiment is described by the nonlinear relation

$$y = F(p, x)$$

and repeated M times to get data pairs $(x_i, y_i)_{i=1}^M$.

Find parameters p that best fit our observations,

$$\min_{p\in\mathbb{R}^P}\sum_{i=1}^M|F(p,x_i)-y_i|^2+R(p)$$

Input/Observation data $(x_i, y_i)_{i=1}^M$, $x_i \in \mathbb{R}^{K_i}$, $y_i \in \mathbb{R}^{K_o}$

Forward map $F: \mathbb{R}^P \times \mathbb{R}^{K_l} : \to \mathbb{R}^{K_O}$

Parameters $p \in \mathbb{R}^P$

Regularization $R: \mathbb{R}^P \to \mathbb{R}_+$.

Examples of data fitting

Back Propagation in Neural Networks

$$y = F(w, b, x),$$

where w are weights, b are biases and $(x_i, y_i)_{i=1}^M$ is training data. Training \equiv find minimizing p = (w, b).

 Computer Vision: 3D geometry and camera pose estimation based on photographs from multiple angles,

$$\min_{c,p} \sum_{i=1}^{C} \sum_{i=1}^{P} v_{i,j} |F(c_i, p_j) - y_{i,j}|^2.$$

Here p_j are 3D points. They are projected onto ith image at coordinates $F(c_i, p_j)$ provided $v_{i,j} = 1$, i.e. the point is visible. c_i are camera parameters.

Optimization over function spaces

• Image processing

Given a noisy image, $f: \Omega \to \mathbb{R}$, compute the denoised image u,

$$\underset{u \in \mathsf{BV}(\Omega)}{\operatorname{argmin}} \, \frac{\lambda}{2} \int_{\Omega} (f - u)^2 dx + \|u\|_{\mathsf{TV}(\Omega)} \,.$$

• Optimal control as PDE constrained optimization

$$u'(t) = A(p(t)) u(t), \quad u(0) = u_0.$$

Find the optimal control p(t) such that at time T we are close to target state u_{target} ,

$$\underset{p \in C^{\infty}([0,T])}{\operatorname{argmin}} \left\| u(T) - u_{\operatorname{target}} \right\|_{2}.$$

Objective function $f: \mathbb{R}^N \to \mathbb{R}$ (smooth)

Admissible (or feasible) set

$$\Omega = \{\mathbf{x} \in \mathbb{R}^N : c_j(\mathbf{x}) = 0, \ j \in \mathcal{E}, \ c_j(\mathbf{x}) \geq 0, \ j \in \mathcal{I}\},$$

with
$$\mathbf{c}: \mathbb{R}^N o \mathbb{R}^{M_e+M_i}$$
, $\mathcal{E}=\{1,\ldots,M_e\}$, $\mathcal{I}=\{M_e+1,\ldots,M_e+M_i\}$

 $\mathbf{x} \in \Omega$ is called *feasible* or *admissible*.

Objective function $f: \mathbb{R}^N \to \mathbb{R}$ (smooth)

Admissible (or feasible) set

$$\Omega = \{ \mathbf{x} \in \mathbb{R}^N : c_j(\mathbf{x}) = 0, \ j \in \mathcal{E}, \ c_j(\mathbf{x}) \geq 0, \ j \in \mathcal{I} \},$$

with
$$\mathbf{c}: \mathbb{R}^N o \mathbb{R}^{M_e+M_i}$$
, $\mathcal{E}=\{1,\ldots,M_e\}$, $\mathcal{I}=\{M_e+1,\ldots,M_e+M_i\}$

 $x \in \Omega$ is called *feasible* or *admissible*.

 $\mathbf{x}_* \in \Omega$ is a *global minimizer* of f in Ω if

$$f(\mathbf{x}_*) \le f(\mathbf{x}) \qquad \forall \mathbf{x} \in \Omega.$$
 (1)

Objective function $f: \mathbb{R}^N \to \mathbb{R}$ (smooth)

Admissible (or feasible) set

$$\Omega = \{ \mathbf{x} \in \mathbb{R}^N : c_j(\mathbf{x}) = 0, \ j \in \mathcal{E}, \ c_j(\mathbf{x}) \geq 0, \ j \in \mathcal{I} \},$$

with
$$\mathbf{c}: \mathbb{R}^N o \mathbb{R}^{M_e+M_i}$$
, $\mathcal{E}=\{1,\ldots,M_e\}$, $\mathcal{I}=\{M_e+1,\ldots,M_e+M_i\}$

 $\mathbf{x} \in \Omega$ is called *feasible* or admissible.

 $\mathbf{x}_* \in \Omega$ is a global minimizer of f in Ω if

$$f(\mathbf{x}_*) \leq f(\mathbf{x}) \quad \forall \mathbf{x} \in \Omega.$$

(1)

 $\mathbf{x}_* \in \Omega$ is a *(strict) local minimizer* of f in Ω if $\exists r > 0$ s.t.

$$f(x) \leq f(x) \qquad \forall x \in \Omega \cap R(x)$$

$$f(\mathbf{x}_*) \leq f(\mathbf{x}) \qquad \forall \mathbf{x} \in \Omega \cap B_r(\mathbf{x}_*)$$

$$f(\mathbf{x}_*) < f(\mathbf{x})$$
 $\forall \mathbf{x} \in (\Omega \cap B_r(\mathbf{x}_*)) \setminus {\mathbf{x}_*}$ (strict)

15

(3)

Objective function $f: \mathbb{R}^N \to \mathbb{R}$ (smooth)

Admissible (or feasible) set

$$\Omega = \{ \mathbf{x} \in \mathbb{R}^N : c_j(\mathbf{x}) = 0, \ j \in \mathcal{E}, \ c_j(\mathbf{x}) \geq 0, \ j \in \mathcal{I} \},$$

with
$$\mathbf{c}: \mathbb{R}^N o \mathbb{R}^{M_e+M_i}$$
, $\mathcal{E} = \{1,\dots,M_e\}$, $\mathcal{I} = \{M_e+1,\dots,M_e+M_i\}$

 $\mathbf{x} \in \Omega$ is called *feasible* or admissible.

$$\mathbf{x}_* \in \Omega$$
 is a *global minimizer* of f in Ω if

$$\forall \mathbf{v} \in \Omega$$

$$f(\mathbf{x}_*) \leq f(\mathbf{x}) \qquad \forall \mathbf{x} \in \Omega.$$

$$\mathbf{x}_* \in \Omega$$
 is a *(strict) local minimizer* of f in Ω if $\exists r > 0$ s.t.

$$f(\mathbf{x}_*) < f(\mathbf{x})$$

$$f(\mathbf{x}_*) \leq f(\mathbf{x}) \qquad \forall \mathbf{x} \in \Omega \cap B_r(\mathbf{x}_*)$$

$$f(\mathbf{x}_*) < f(\mathbf{x}) \qquad \forall \mathbf{x} \in (\Omega \cap B_r(\mathbf{x}_*)) \setminus \{\mathbf{x}_*\} \quad \text{(strict)}$$

(1)

Our focus

Constrained optimisation

$$\min_{\mathbf{x}\in\Omega\subset\mathbb{R}^N}f:\mathbb{R}^N\to\mathbb{R}$$

Constrained optimisation

$$\min_{\mathbf{x}\in\Omega\subset\mathbb{R}^N}f:\mathbb{R}^N\to\mathbb{R}$$

Unconstrained optimisation

$$\min_{\mathbf{x}\in\mathbb{R}^N}f:\mathbb{R}^N\to\mathbb{R}$$

Constrained optimisation

$$\min_{\mathbf{x}\in\Omega\subset\mathbb{R}^N}f:\mathbb{R}^N\to\mathbb{R}$$

Unconstrained optimisation

$$\min_{\mathbf{x}\in\mathbb{R}^N} f: \mathbb{R}^N \to \mathbb{R}$$

Solving simultaneous nonlinear equations

Find
$$\mathbf{x}_* \in \mathbb{R}^N$$
 s.t. $F(\mathbf{x}_*) = \mathbf{0}$ for $F: \mathbb{R}^N \to \mathbb{R}^N$

Constrained optimisation

$$\min_{\mathbf{x}\in\Omega\subset\mathbb{R}^N}f:\mathbb{R}^N\to\mathbb{R}$$

Unconstrained optimisation

$$\min_{\mathbf{x}\in\mathbb{R}^N} f: \mathbb{R}^N \to \mathbb{R}$$

Solving simultaneous nonlinear equations

Find
$$\mathbf{x}_* \in \mathbb{R}^N$$
 s.t. $F(\mathbf{x}_*) = \mathbf{0}$ for $F: \mathbb{R}^N \to \mathbb{R}^N$

In reverse order!!

Course Overview

- Revision: Linear Algebra & Multivariate Calculus
- Newton's Method
- Global Convergence: Line Search & Trust Region
- Quasi-Newton Methods (gradient-free)
- Optimality Conditions for Constrained Optimisation
- Penalty Methods
- Barrier Methods
- Large-Scale Optimisation

Literature

- Christoph Ortner, Continuous Optimization, Lecture Notes, Oxford, 2009
- JE Dennis & RB Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, 1983
- J Nocedal & SJ Wright, Numerical Optimization, 2006
- N.I.M. Gould & S. Leyffer, "An introduction to algorithms for nonlinear optimization", in *Frontiers in NA*, Springer, 2003

Other Important Informations (see also handout)

Lectures: Wednesday 10.15 1W 3.30

Thursday 11.15 CB 4.10

No lectures in week 4

Problem classes: Friday 17.15 8W 2.20

No problem classes in weeks 1,2,4,10

 Problem sheets, handouts, Matlab codes, and other useful material/links available on the course web page

http://www.pranavsingh.co.uk/ma40050.

- Computing in **Matlab** (on BUCS or own laptop/PC).
- Assignment (worth 25%) provisionally planned Mar 18–Apr 28.