Instructions: Hand in solutions to Questions 2 & 3 by Thursday, 13th February, 12.15pm (either in one of the lectures or to the pigeon hole in 4W Level 1).

1. Let $A \in \mathbb{R}^{N \times N}$ be invertible, then its condition number is $\kappa(A) = ||A|| ||A^{-1}||$. Suppose we wish to solve the linear system Ax = b, but we know only an erroneous right-hand side \tilde{b} . Let $A\tilde{x} = \tilde{b}$, i.e., \tilde{x} is the erroneous solution. Prove the following estimate on the relative error:

$$\frac{\|x - \tilde{x}\|}{\|x\|} \le \kappa(A) \frac{\|b - \tilde{b}\|}{\|b\|}$$

- 2. Find the gradients $\nabla f(x)$ and Hessians $\nabla^2 f(x)$ of the following functions $f \colon \mathbb{R}^N \to \mathbb{R}$:
 - (a) $f(x) := b^T x$, where $b \in \mathbb{R}^N$;
 - (b) $f(x) := (1 x_1)^2 + 100(x_2 x_1^2)^2$, N = 2 (Rosenbrock function);
 - (c) $f(x) := F(x)^T F(x)$, where $F(x) = [F_1(x), \dots, F_M(x)]^T$. Use the matrix J(x), the $M \times N$ Jacobian matrix of F(x) with (i, j) th element $J_{ij} = \partial F_i / \partial x_j$.
- 3. Let U be an open convex set in \mathbb{R}^N . Prove the following Taylor formulae:
 - (a) If $F \in C^1(U; \mathbb{R}^M)$ then

$$F(x+h) = F(x) + \nabla F(x)^T h + \int_0^1 \left(\nabla F(x+th) - \nabla F(x) \right)^T h \, \mathrm{d}t.$$

(b) If $f \in C^2(U; \mathbb{R})$ then

$$f(x+h) = f(x) + \nabla f(x) \cdot h + \frac{1}{2}h^T \nabla^2 f(x)h + h^T \Big[\int_0^1 (1-t)(\nabla^2 f(x+th) - \nabla^2 f(x)) \, \mathrm{d}t \Big]h.$$

[Hint: Define $\varphi(t) = f(x+th)$ and prove and then use the one-dimensional analogues using the Fundamental Theorem of Calculus for φ and φ' .]

4. Prove Theorem 2.7, the Contraction Mapping Theorem.

[Hint: You may follow the following steps (mostly revision):

- Show that $\forall k > l \ge 0$, $||x^k x^l|| \le \frac{\alpha^l}{1 \alpha} ||x^1 x^0||.$
- Deduce that $\{x^k\}$ is a Cauchy sequence in $\bar{B}_r(x_0)$ and hence convergent to some $x_* \in \bar{B}_r(\mathbf{x}_0)$.
- Show that $||x_* G(x_*)|| \le ||x_* x^{k+1}|| + \alpha ||x_* x^k||$ and deduce that $G(x_*) = x_*$.
- Show that x_* is the unique fixed point of G in $\overline{B}_r(x_0)$.]