Splitting methods for quantum dynamics and control

Pranav Singh (University of Bath) ⊠ ps2106@bath.ac.uk ⊕ www.pranavsingh.co.uk ⊙ @denoising ⊛ @brownadder

15th of November 2022

Complex Quantum Systems Paderborn

Quantum Dynamics and Control

Quantum Dynamics:

$$\partial_t u = \mathcal{A}(t; \theta) u, \qquad u(0) = u_0$$

compute $u(T; \theta)$, where

- u(t) represents state of quantum system at time t,
- A completely describes the dynamics of the quantum system,
- $\theta \in \Omega$ are a set of controls.

Optimal Control:

$$heta^* = rgmax_{ heta \in \Omega} f(u(T; heta)),$$

where f is an appropriate objective function.

Quantum Dynamics and Control

Quantum Dynamics:

$$\partial_t u = \mathcal{A}(t; \theta) u, \qquad u(0) = u_0$$

Need accurate models $\mathcal{A}(t; \theta)$

compute $u(T; \theta)$, where

- u(t) represents state of quantum system at time t,
- A completely describes the dynamics of the quantum system,
- $\theta \in \Omega$ are a set of controls.

Optimal Control:

$$heta^* = rgmax_{ heta \in \Omega} f(u(T; heta)),$$

where f is an appropriate objective function.

Quantum Dynamics:

$$\partial_t u = \mathcal{A}(t; \theta) u, \qquad u(0) = u_0$$

Need accurate models $\mathcal{A}(t; \theta)$ and efficient numerical methods to compute $u(T; \theta)$, where

- u(t) represents state of quantum system at time t,
- $\mathcal A$ completely describes the dynamics of the quantum system,
- $\theta \in \Omega$ are a set of controls.

Optimal Control:

$$heta^* = rgmax_{ heta \in \Omega} f(u(T; heta)),$$

where f is an appropriate objective function.

Quantum Dynamics:

$$\partial_t u = \mathcal{A}(t; \theta) u, \qquad u(0) = u_0$$

Need accurate models $\mathcal{A}(t; \theta)$ and efficient numerical methods to compute $u(T; \theta)$, where

- u(t) represents state of quantum system at time t,
- \mathcal{A} completely describes the dynamics of the quantum system,
- $\theta \in \Omega$ are a set of controls.

Optimal Control:

$$\theta^* = \operatorname*{arg\,max}_{\theta \in \Omega} f(u(T; \theta)),$$

where f is an appropriate objective function.

Need efficient and accurate gradients of f,

Quantum Dynamics:

$$\partial_t u = \mathcal{A}(t; \theta) u, \qquad u(0) = u_0$$

Need accurate models $\mathcal{A}(t; \theta)$ and efficient numerical methods to compute $u(T; \theta)$, where

- u(t) represents state of quantum system at time t,
- \mathcal{A} completely describes the dynamics of the quantum system,
- $\theta \in \Omega$ are a set of controls.

Optimal Control:

$$\theta^* = rgmax_{ heta \in \Omega} f(u(T; \theta)),$$

where f is an appropriate objective function.

Need efficient and accurate gradients of f, and optimisation algorithms.

 $i\varepsilon \partial_t \psi = H(t; \theta) \psi$

$$i\varepsilon\partial_t\psi = H(t;\theta)\psi := -\varepsilon^2\Delta\psi + V(x,t;\theta)\psi.$$

$$i\varepsilon \partial_t \psi = H(t; \theta) \psi := -\varepsilon^2 \Delta \psi + V(x, t; \theta) \psi.$$

Laser control.

$$i\varepsilon \partial_t \psi = H(t; \theta) \psi := -\varepsilon^2 \Delta \psi + V(x, t; \theta) \psi.$$

Laser control.

Electrons $\varepsilon = 1$.

$$i\varepsilon\partial_t\psi = H(t;\theta)\psi := -\varepsilon^2\Delta\psi + V(x,t;\theta)\psi.$$

Laser control. Electrons $\varepsilon = 1$. Nuclei $\varepsilon \ll 1$.

$$i\varepsilon\partial_t\psi = H(t;\theta)\psi := -\varepsilon^2\Delta\psi + V(x,t;\theta)\psi.$$

Laser control. Electrons $\varepsilon = 1$. Nuclei $\varepsilon \ll 1$.

2. Liouville-von Neumann (ODE)

$$\partial_t \rho = \mathcal{L}(t; \theta) \rho$$

$$i\varepsilon\partial_t\psi = H(t;\theta)\psi := -\varepsilon^2\Delta\psi + V(x,t;\theta)\psi.$$

Laser control. Electrons $\varepsilon = 1$. Nuclei $\varepsilon \ll 1$.

2. Liouville-von Neumann (ODE)

$$\partial_t \rho = \mathcal{L}(t; \theta) \rho := -\mathrm{i} [\mathrm{H}(t; \theta), \rho] + \mathcal{R}(\rho).$$

$$i\varepsilon\partial_t\psi = H(t;\theta)\psi := -\varepsilon^2\Delta\psi + V(x,t;\theta)\psi.$$

Laser control. Electrons $\varepsilon = 1$. Nuclei $\varepsilon \ll 1$.

2. Liouville-von Neumann (ODE)

$$\partial_t \rho = \mathcal{L}(t; \theta) \rho := -\mathrm{i} [\mathrm{H}(t; \theta), \rho] + \mathcal{R}(\rho).$$

Spin dynamics.

$$i\varepsilon\partial_t\psi = H(t;\theta)\psi := -\varepsilon^2\Delta\psi + V(x,t;\theta)\psi.$$

Laser control. Electrons $\varepsilon = 1$. Nuclei $\varepsilon \ll 1$.

2. Liouville-von Neumann (ODE)

$$\partial_t \rho = \mathcal{L}(t; \theta) \rho := -\mathrm{i} [\mathrm{H}(t; \theta), \rho] + \mathcal{R}(\rho).$$

Spin dynamics. NMR. ESR.

$$i\varepsilon\partial_t\psi = H(t;\theta)\psi := -\varepsilon^2\Delta\psi + V(x,t;\theta)\psi.$$

Laser control. Electrons $\varepsilon = 1$. Nuclei $\varepsilon \ll 1$.

2. Liouville-von Neumann (ODE)

$$\partial_t \rho = \mathcal{L}(t; \theta) \rho := -\mathrm{i} [\mathrm{H}(t; \theta), \rho] + \mathcal{R}(\rho).$$

Spin dynamics. NMR. ESR. Quantum Gates.

optimal control \iff (electric or magnetic) pulse design

- The matrix exponential
- The Magnus expansion
- Specialised splittings for Schrödinger equation under laser potential
- Spin dynamics and control
 - Dynamics
 - Computation of gradients
 - Optimization strategies

$$\partial_t u = \mathcal{A}(t; \theta) u, \qquad u(0) = u_0$$

$$\partial_t u = \mathcal{A}(t) u, \qquad u(0) = u_0$$

$$\partial_t u = \mathcal{A} u, \qquad u(0) = u_0$$

$$\partial_t u = \mathcal{A} u, \qquad u(0) = u_0$$

$$u(t) = \mathbf{e}^{t\mathcal{A}} u_0 = \sum_{k=0}^{\infty} \frac{(t\mathcal{A})^k}{k!}.$$

 \mathcal{A}

$$\partial_t u = \mathcal{A} u, \qquad u(0) = u_0$$

$$u(t) = \mathrm{e}^{t\mathcal{A}} u_0 = \sum_{k=0}^{\infty} \frac{(t\mathcal{A})^k}{k!}.$$

Schrödinger $\varepsilon = 1$	$LvN \mathcal{R} = 0$	
-iH	$-\mathrm{i}\mathrm{ad}_\mathrm{H}$	$\operatorname{ad}_X(Y) = [X, Y]$

$$\partial_t u = \mathcal{A} u, \qquad u(0) = u_0$$

$$u(t) = \mathrm{e}^{t\mathcal{A}} u_0 = \sum_{k=0}^{\infty} \frac{(t\mathcal{A})^k}{k!}.$$

$$\partial_t u = \mathcal{A} u, \qquad u(0) = u_0$$

$$u(t) = \mathbf{e}^{t\mathcal{A}} u_0 = \sum_{k=0}^{\infty} \frac{(t\mathcal{A})^k}{k!}.$$

$$\partial_t u = \mathcal{A} u, \qquad u(0) = u_0$$

$$u(t) = \mathrm{e}^{t\mathcal{A}} u_0 = \sum_{k=0}^{\infty} \frac{(t\mathcal{A})^k}{k!}.$$

$$\partial_t u = \mathcal{A} u, \qquad u(0) = u_0$$

The exact solution is given by the matrix exponential

$$u(t) = \mathrm{e}^{t\mathcal{A}} u_0 = \sum_{k=0}^{\infty} \frac{(t\mathcal{A})^k}{k!}.$$

exp maps Lie algebra $iH \in \mathfrak{su}(n)$ to Lie group $e^{-itH} \in U(n)$.

$$\partial_t u = \mathcal{A} u, \qquad u(0) = u_0$$

The exact solution is given by the matrix exponential

$$u(t) = \mathrm{e}^{t\mathcal{A}} u_0 = \sum_{k=0}^{\infty} \frac{(t\mathcal{A})^k}{k!}.$$

exp maps Lie algebra $iH \in \mathfrak{su}(n)$ to Lie group $e^{-itH} \in U(n)$.

These properties are also desired from numerical approximations.

$$\partial_t u = \mathcal{A} u, \qquad u(0) = u_0$$

The exact solution is given by the matrix exponential

$$u(t) = \mathrm{e}^{t\mathcal{A}} u_0 = \sum_{k=0}^{\infty} \frac{(t\mathcal{A})^k}{k!}.$$

exp maps Lie algebra $iH \in \mathfrak{su}(n)$ to Lie group $e^{-itH} \in U(n)$.

These properties are also desired from numerical approximations.

If A is easily diagonalisable, $A = U \operatorname{diag}(\lambda_1, \dots, \lambda_n) U^*$, $e^{tA} = U \operatorname{diag}(e^{t\lambda_1}, \dots, e^{t\lambda_n}) U^*$.

$e^z \approx 1 + z$	$u_{n+1} = (I - \mathrm{i}h\mathrm{H})u_n$	F.E.	$\ u_n\ _2 \rightarrow \infty$
$e^z \approx \frac{1}{1-z}$	$(I + \mathrm{i}h\mathrm{H})u_{n+1} = u_n$	B.E.	$ u_n _2 \rightarrow 0$
$e^z \approx \frac{1+z/2}{1-z/2}$	$(I + i(h/2)H) u_{n+1} = (I - i(h/2)H) u_n$	C.N.	$ u_n _2 = u_0 _2$

Crank Nicholson conserves mass, energy and maps $\mathfrak{su}(n)$ to U(n).

$e^z \approx 1 + z$	$u_{n+1} = (I - \mathrm{i}h\mathrm{H})u_n$	F.E.	$\ u_n\ _2 \to \infty$
$e^z \approx \frac{1}{1-z}$	$(I + \mathrm{i}h\mathrm{H})u_{n+1} = u_n$	B.E.	$\ u_n\ _2 \rightarrow 0$
$e^z \approx \frac{1+z/2}{1-z/2}$	$(I + i(h/2)H) u_{n+1} = (I - i(h/2)H) u_n$	C.N.	$ u_n _2 = u_0 _2$

Crank Nicholson conserves mass, energy and maps $\mathfrak{su}(n)$ to U(n). It is based on based on the *Cayley* map, and is the first diagonal Padé method, $R_{1,1}$.

$e^z \approx 1 + z$	$u_{n+1} = (I - \mathrm{i}h\mathrm{H})u_n$	F.E.	$\ u_n\ _2 \rightarrow \infty$
$e^z \approx \frac{1}{1-z}$	$(I + \mathrm{i}h\mathrm{H})u_{n+1} = u_n$	B.E.	$\ u_n\ _2 \rightarrow 0$
$e^z \approx \frac{1+z/2}{1-z/2}$	$(I + i(h/2)H) u_{n+1} = (I - i(h/2)H) u_n$	C.N.	$ u_n _2 = u_0 _2$

Crank Nicholson conserves mass, energy and maps $\mathfrak{su}(n)$ to U(n). It is based on based on the *Cayley* map, and is the first diagonal Padé method, $R_{1,1}$. Padé methods are the basis for MATLAB's expm function,

$$e^z \approx R_{n,n}(z) = \frac{P_{n,n}(z)}{Q_{n,n}(z)},$$

$e^z \approx 1 + z$	$u_{n+1} = (I - \mathrm{i}h\mathrm{H})u_n$	F.E.	$\ u_n\ _2 \rightarrow \infty$
$e^z \approx \frac{1}{1-z}$	$(I + \mathrm{i}h\mathrm{H})u_{n+1} = u_n$	B.E.	$\ u_n\ _2 \rightarrow 0$
$e^z \approx \frac{1+z/2}{1-z/2}$	$(I + i(h/2)H) u_{n+1} = (I - i(h/2)H) u_n$	C.N.	$ u_n _2 = u_0 _2$

Crank Nicholson conserves mass, energy and maps $\mathfrak{su}(n)$ to U(n). It is based on based on the *Cayley* map, and is the first diagonal Padé method, $R_{1,1}$. Padé methods are the basis for MATLAB's expm function,

$$\mathrm{e}^{z} \approx R_{n,n}(z) = rac{P_{n,n}(z)}{Q_{n,n}(z)}, \quad |R_{n,n}(\mathrm{i}\theta)| = 1$$

$e^z \approx 1 + z$	$u_{n+1} = (I - \mathrm{i}h\mathrm{H})u_n$	F.E.	$\ u_n\ _2 \to \infty$
$e^z \approx \frac{1}{1-z}$	$(I + \mathrm{i}h\mathrm{H})u_{n+1} = u_n$	B.E.	$ u_n _2 \rightarrow 0$
$e^z \approx \frac{1+z/2}{1-z/2}$	$(I + i(h/2)H) u_{n+1} = (I - i(h/2)H) u_n$	C.N.	$ u_n _2 = u_0 _2$

Crank Nicholson conserves mass, energy and maps $\mathfrak{su}(n)$ to U(n). It is based on based on the *Cayley* map, and is the first diagonal Padé method, $R_{1,1}$. Padé methods are the basis for MATLAB's expm function,

$$\mathrm{e}^{z} pprox R_{n,n}(z) = rac{P_{n,n}(z)}{Q_{n,n}(z)}, \quad |R_{n,n}(\mathrm{i} heta)| = 1 \quad \Longleftrightarrow \quad R_{n,n}: \mathfrak{su}(n)
ightarrow \mathrm{U}(n)$$

$e^z \approx 1 + z$	$u_{n+1} = (I - \mathrm{i}h\mathrm{H})u_n$	F.E.	$\ u_n\ _2 \rightarrow \infty$
$e^z \approx \frac{1}{1-z}$	$(I + \mathrm{i}h\mathrm{H})u_{n+1} = u_n$	B.E.	$\ u_n\ _2 \rightarrow 0$
$e^z \approx \frac{1+z/2}{1-z/2}$	$(I + i(h/2)H) u_{n+1} = (I - i(h/2)H) u_n$	C.N.	$ u_n _2 = u_0 _2$

Crank Nicholson conserves mass, energy and maps $\mathfrak{su}(n)$ to U(n). It is based on based on the *Cayley* map, and is the first diagonal Padé method, $R_{1,1}$. Padé methods are the basis for MATLAB's expm function,

 $\mathrm{e}^{z} pprox R_{n,n}(z) = rac{P_{n,n}(z)}{Q_{n,n}(z)}, \quad |R_{n,n}(\mathrm{i} heta)| = 1 \quad \Longleftrightarrow \quad R_{n,n}:\mathfrak{su}(n)
ightarrow \mathrm{U}(n)$

However, Padé methods are *Taylor* based and focus effort near the origin.

$e^z \approx 1 + z$	$u_{n+1} = (I - \mathrm{i}h\mathrm{H})u_n$	F.E.	$\ u_n\ _2 \rightarrow \infty$
$e^z \approx \frac{1}{1-z}$	$(I + \mathrm{i}h\mathrm{H})u_{n+1} = u_n$	B.E.	$\ u_n\ _2 \rightarrow 0$
$e^z \approx \frac{1+z/2}{1-z/2}$	$(I + i(h/2)H) u_{n+1} = (I - i(h/2)H) u_n$	C.N.	$ u_n _2 = u_0 _2$

Crank Nicholson conserves mass, energy and maps $\mathfrak{su}(n)$ to U(n). It is based on based on the *Cayley* map, and is the first diagonal Padé method, $R_{1,1}$. Padé methods are the basis for MATLAB's expm function,

 $\mathrm{e}^{z} \approx R_{n,n}(z) = rac{P_{n,n}(z)}{Q_{n,n}(z)}, \quad |R_{n,n}(\mathrm{i}\theta)| = 1 \quad \Longleftrightarrow \quad R_{n,n}: \mathfrak{su}(n) \to \mathrm{U}(n)$

However, Padé methods are *Taylor* based and focus effort near the origin.

Uniform approximation: AAA (NST 18. SIAM J. Sci. Comput.) and AAA–Lawson (NT 20. SIAM J. Sci. Comput.). Nakatsukasa, Sète, Trefethen.

$e^z \approx 1 + z$	$u_{n+1} = (I - \mathrm{i}h\mathrm{H})u_n$	F.E.	$\ u_n\ _2 \rightarrow \infty$
$e^z \approx \frac{1}{1-z}$	$(I + \mathrm{i}h\mathrm{H})u_{n+1} = u_n$	B.E.	$\ u_n\ _2 \rightarrow 0$
$e^z \approx \frac{1+z/2}{1-z/2}$	$(I + i(h/2)H) u_{n+1} = (I - i(h/2)H) u_n$	C.N.	$ u_n _2 = u_0 _2$

Crank Nicholson conserves mass, energy and maps $\mathfrak{su}(n)$ to U(n). It is based on based on the *Cayley* map, and is the first diagonal Padé method, $R_{1,1}$. Padé methods are the basis for MATLAB's expm function,

$$\mathrm{e}^{z} pprox R_{n,n}(z) = rac{P_{n,n}(z)}{Q_{n,n}(z)}, \quad |R_{n,n}(\mathrm{i}\theta)| = 1 \quad \Longleftrightarrow \quad R_{n,n}:\mathfrak{su}(n) \to \mathrm{U}(n)$$

However, Padé methods are *Taylor* based and focus effort near the origin.

Uniform approximation: AAA (NST 18. SIAM J. Sci. Comput.) and AAA–Lawson (NT 20. SIAM J. Sci. Comput.). Nakatsukasa, Sète, Trefethen. These are also Unitary,

$$|r(i\theta)| = 1 \iff r : \mathfrak{su}(n) \to U(n)$$

Tobias Jawecki (TU Vienna). JS 23. Under review; JS 23. In preparation.
$$u(h) = e^{hA}u_0$$

We need to approximate matrix-vector product $\exp(hA)u_0$. Krylov subspace:

$$\mathcal{K}_m(A, u_0) = \operatorname{span} \{u_0, Au_0, A^2u_0, \ldots, A^{m-1}u_0\}, \qquad m \in \mathbb{N}.$$

Lanczos: power-iteration interspersed with Gram–Schmidt orthogonalisation. Produces basis V_m and tridiagonal H_m .

$$\mathrm{e}^{hA}$$
u_0 $pprox \mathcal{V}_m \mathrm{e}^{h\mathcal{H}_m} \mathcal{V}_m^*$ u_0

Really effective if $m \ll N$ (\mathcal{H}_m is $m \times m$, A is $N \times N$).

$$u(h) = e^{hA}u_0$$

We need to approximate matrix-vector product $\exp(hA)u_0$. Krylov subspace:

$$\mathcal{K}_m(A, u_0) = \operatorname{span} \{u_0, Au_0, A^2u_0, \ldots, A^{m-1}u_0\}, \qquad m \in \mathbb{N}.$$

Lanczos: power-iteration interspersed with Gram–Schmidt orthogonalisation. Produces basis V_m and tridiagonal H_m .

$$\mathrm{e}^{hA}$$
u_0 $pprox \mathcal{V}_m \mathrm{e}^{h\mathcal{H}_m} \mathcal{V}_m^*$ u_0

Really effective if $m \ll N$ (\mathcal{H}_m is $m \times m$, A is $N \times N$).

Need m > h ||A||. Hochbruck & Lubich 97.

Approximating the matrix exponential

Different methods might be more efficient depending on the matrix structure.

C. Moler & C. V. Loan, Nineteen dubious ways to compute the exponential of a matrix, SIAM Review 78; Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later, SIAM Review 03.

- Diagonalisation
- Padé
- AAA & AAA-Lawson (new) JS 23. Under review; JS 23. In preparation.
- Taylor
- Chebyshev
- Scaling and squaring
- Lanczos (polynomial Krylov)
- Rational Krylov (new)

Approximating the matrix exponential

Different methods might be more efficient depending on the matrix structure.

C. Moler & C. V. Loan, Nineteen dubious ways to compute the exponential of a matrix, SIAM Review 78; Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later, SIAM Review 03.

- Diagonalisation
- Padé
- AAA & AAA-Lawson (new) JS 23. Under review; JS 23. In preparation.
- Taylor
- Chebyshev
- Scaling and squaring
- Lanczos (polynomial Krylov)
- Rational Krylov (new)
- Splitting

$$\partial_t u = (\mathbf{A} + \mathbf{B})u, \quad u(0) = u_0,$$

$$\partial_t u = (A + B)u, \quad u(0) = u_0, \qquad A = i\Delta, B = -iV$$

$$\partial_t u = (A + B)u, \quad u(0) = u_0, \qquad A = i\Delta, B = -iV$$

$$u(h) = e^{h(A+B)}u_0.$$

$$\partial_t u = (\mathbf{A} + \mathbf{B})u, \quad u(0) = u_0, \qquad A = i\Delta, \ B = -iV$$

$$u(h) = \mathrm{e}^{h(\mathbf{A}+B)} u_0.$$

If e^{hA} and e^{hB} are easier to compute, split the exponential:

splitting	error	name	stages
e ^{hA} e ^{hB}	$\mathcal{O}(h^2)$	Trotter	2

$$\partial_t u = (A + B)u, \quad u(0) = u_0, \qquad A = i\Delta, B = -iV$$

$$u(h) = \mathrm{e}^{h(\mathbf{A}+B)} u_0.$$

If e^{hA} and e^{hB} are easier to compute, split the exponential:

splitting	error	name	stages
64 6B	(2(12))	-	
	$\mathcal{O}(h^2)$	Trotter	2
$e^{\frac{1}{2}hA}e^{hB}e^{\frac{1}{2}hA}$	$\mathcal{O}(h^3)$	Strang	3

$$\partial_t u = (A + B)u, \quad u(0) = u_0, \qquad A = i\Delta, B = -iV$$

$$u(h) = \mathrm{e}^{h(\mathbf{A}+B)} u_0.$$

If e^{hA} and e^{hB} are easier to compute, split the exponential:

splitting	error	name	stages
spirtting	crior	name	Stages
ohA ohB	$\mathcal{O}(h^2)$	Trottor	2
	O(n)	Trotter	2
$e^{\frac{1}{2}hA}e^{hB}e^{\frac{1}{2}hA}$	$O(h^3)$	Strang	3
$\mathrm{e}^{a_1hA}\mathrm{e}^{b_1hB}\mathrm{e}^{a_2hA}\ldots\mathrm{e}^{b_nhB}\ldots\mathrm{e}^{a_2hA}\mathrm{e}^{b_1hB}\mathrm{e}^{a_1hA}$	$\mathcal{O}(h^{2p+1})$	Classical	$\mathcal{O}(2^p)$

$$\partial_t u = (A + B)u, \quad u(0) = u_0, \qquad A = i\Delta, B = -iV$$

$$u(h) = \mathrm{e}^{h(\mathbf{A}+B)} u_0.$$

If e^{hA} and e^{hB} are easier to compute, split the exponential:

splitting	error	name	stages
$e^{hA}e^{hB}$ $e^{\frac{1}{2}hA}e^{hB}e^{\frac{1}{2}hA}$	$\mathcal{O}(h^2)$ $\mathcal{O}(h^3)$	Trotter Strang	2 3
$\mathrm{e}^{a_1hA}\mathrm{e}^{b_1hB}\mathrm{e}^{a_2hA}\ldots\mathrm{e}^{b_nhB}\ldots\mathrm{e}^{a_2hA}\mathrm{e}^{b_1hB}\mathrm{e}^{a_1hA}$	$\mathcal{O}(h^{2p+1})$	Classical	$\mathcal{O}(2^p)$
$e^{\frac{h}{6}B}e^{\frac{h}{2}A}e^{\frac{2}{3}}(hB+\frac{h^{3}}{48}[[A,B],B])e^{\frac{h}{2}A}e^{\frac{h}{6}B}$	$\mathcal{O}(h^{2p+1})$	Compact	$\mathcal{O}(2^p)$

$$\partial_t u = (\mathbf{A} + \mathbf{B})u, \quad u(0) = u_0, \qquad A = i\Delta, \ B = -iV$$

$$u(h) = \mathrm{e}^{h(\mathbf{A}+B)} u_0.$$

If e^{hA} and e^{hB} are easier to compute, split the exponential:

splitting	error	name	stages
e ^{hA} e ^{hB}	$O(h^2)$	Trotter	2
$e^{\frac{1}{2}hA}e^{hB}e^{\frac{1}{2}hA}$	$O(h^3)$	Strang	3
$\mathrm{e}^{a_1hA}\mathrm{e}^{b_1hB}\mathrm{e}^{a_2hA}\ldots\mathrm{e}^{b_nhB}\ldots\mathrm{e}^{a_2hA}\mathrm{e}^{b_1hB}\mathrm{e}^{a_1hA}$	$\mathcal{O}(h^{2p+1})$	Classical	$\mathcal{O}(2^p)$
${\rm e}^{\frac{h}{6}B} {\rm e}^{\frac{h}{2}A} {\rm e}^{\frac{2}{3}} (hB + \frac{h^3}{48} [[A,B],B]) {\rm e}^{\frac{h}{2}A} {\rm e}^{\frac{h}{6}B}$	$\mathcal{O}(h^{2p+1})$	Compact	$\mathcal{O}(2^p)$
$\mathrm{e}^{\frac{h}{2}\mathbf{A}}\mathrm{e}^{\frac{h}{2}B}\mathrm{e}^{h^{3}R}\mathrm{e}^{h^{5}S}\mathrm{e}^{h^{3}R}\mathrm{e}^{\frac{h}{2}B}\mathrm{e}^{\frac{h}{2}A}$	$\mathcal{O}(h^{2p+1})$	Asymptotic	$\mathcal{O}(p)$

Asymptotic (Zassenhaus) BIKS 14 Found. Comp. Math.

- The matrix exponential
- The Magnus expansion
- Specialised splittings for Schrödinger equation under laser potential
- Spin dynamics and control
 - Dynamics
 - Computation of gradients
 - Optimization strategies

The solution to u'(t) = A(t)u(t)

The solution to u'(t) = A(t)u(t) is NOT

 $u(t) = \mathrm{e}^{tA(t)}u_0,$

The solution to u'(t) = A(t)u(t) is NOT

 $u(t) = \mathrm{e}^{tA(t)}u_0,$

NOR

$$u(t) = \mathrm{e}^{\int_0^t A(\xi) \,\mathrm{d}\xi} u_0$$

The solution to u'(t) = A(t)u(t) is **NOT**

 $u(t)=\mathrm{e}^{tA(t)}u_0,$

NOR

$$u(t)=\mathrm{e}^{\int_0^t A(\xi)\,\mathrm{d}\xi}u_0,$$

although the latter gives an approximation for small t.

The solution to u'(t) = A(t)u(t) is **NOT**

 $u(t)=\mathrm{e}^{tA(t)}u_0,$

NOR

$$u(t) = \mathrm{e}^{\int_0^t A(\xi) \,\mathrm{d}\xi} u_0,$$

although the latter gives an approximation for small t. Magnus 54 sought $\Theta(h)$ such that exact solution is

 $u(h) = \exp\left(\Theta(h)\right) u_0,$

The solution to u'(t) = A(t)u(t) is **NOT**

 $u(t)=\mathrm{e}^{tA(t)}u_0,$

NOR

$$u(t) = \mathrm{e}^{\int_0^t A(\xi) \,\mathrm{d}\xi} u_0,$$

although the latter gives an approximation for small t. Magnus 54 sought $\Theta(h)$ such that exact solution is

$$u(h) = \exp\left(\Theta(h)\right) u_0,$$

 $\Theta(h)$ is the Magnus expansion,

$$\begin{split} \Theta(h) &= \int_{0}^{h} A(\xi) \, \mathrm{d}\xi - \frac{1}{2} \int_{0}^{h} \int_{0}^{\xi} [A(\zeta), A(\xi)] \, \mathrm{d}\zeta \, \mathrm{d}\xi \\ &+ \frac{1}{12} \int_{0}^{h} \int_{0}^{\xi} \int_{0}^{\xi} [A(\chi), [A(\zeta), A(\xi)]] \, \mathrm{d}\chi \, \mathrm{d}\zeta \, \mathrm{d}\xi \\ &+ \frac{1}{4} \int_{0}^{h} \int_{0}^{\xi} \int_{0}^{\zeta} [[A(\chi), A(\zeta)], A(\xi)] \, \mathrm{d}\chi \, \mathrm{d}\zeta \, \mathrm{d}\xi + \dots \end{split}$$

The solution to u'(t) = A(t)u(t) is **NOT**

 $u(t)=\mathrm{e}^{tA(t)}u_0,$

NOR

$$u(t) = \mathrm{e}^{\int_0^t A(\xi) \,\mathrm{d}\xi} u_0,$$

although the latter gives an approximation for small t. Magnus 54 sought $\Theta(h)$ such that exact solution is

$$u(h) = \exp\left(\Theta(h)\right) u_0,$$

 $\Theta(h)$ is the Magnus expansion,

$$\begin{split} \Theta(h) &= \int_{0}^{h} A(\xi) \, \mathrm{d}\xi - \frac{1}{2} \int_{0}^{h} \int_{0}^{\xi} [A(\zeta), A(\xi)] \, \mathrm{d}\zeta \, \mathrm{d}\xi \\ &+ \frac{1}{12} \int_{0}^{h} \int_{0}^{\xi} \int_{0}^{\xi} [A(\chi), [A(\zeta), A(\xi)]] \, \mathrm{d}\chi \, \mathrm{d}\zeta \, \mathrm{d}\xi \\ &+ \frac{1}{4} \int_{0}^{h} \int_{0}^{\xi} \int_{0}^{\zeta} [[A(\chi), A(\zeta)], A(\xi)] \, \mathrm{d}\chi \, \mathrm{d}\zeta \, \mathrm{d}\xi + \ldots \end{split}$$

In practice: truncate series, discretise integrals, approximate matrix exponential.

The exponentiation of the sixth-order Magnus expansion

$$\begin{split} \Theta_5(h) = & \frac{1}{18} (5A_1 + 8A_2 + 5A_3) - \frac{\sqrt{15}}{108} \left(2[A_1, A_2] + [A_1, A_3] + 2[A_2, A_3] \right) \\ & + \frac{1}{27216} \left(94[A_1, [A_1, A_2]] + 45[A_1, [A_1, A_3]] + 194[A_1, [A_2, A_3]] - 152[A_2, [A_1, A_2]] \right) \\ & + 152[A_2, [A_2, A_3]] - 194[A_3, [A_1, A_2]] - 45[A_3, [A_1, A_3]] - 94[A_3, [A_2, A_3]]), \end{split}$$

The exponentiation of the sixth-order Magnus expansion

$$\begin{split} \Theta_5(h) = & \frac{1}{18} (5A_1 + 8A_2 + 5A_3) - \frac{\sqrt{15}}{108} (2[A_1, A_2] + [A_1, A_3] + 2[A_2, A_3]) \\ & + \frac{1}{27216} (94[A_1, [A_1, A_2]] + 45[A_1, [A_1, A_3]] + 194[A_1, [A_2, A_3]] - 152[A_2, [A_1, A_2]] \\ & + 152[A_2, [A_2, A_3]] - 194[A_3, [A_1, A_2]] - 45[A_3, [A_1, A_3]] - 94[A_3, [A_2, A_3]]), \end{split}$$

Lanczos: Nested commutators $\Rightarrow \Theta_5(h)u$ costly.

The exponentiation of the sixth-order Magnus expansion

$$\begin{split} \Theta_5(h) = & \frac{1}{18} (5A_1 + 8A_2 + 5A_3) - \frac{\sqrt{15}}{108} \left(2[A_1, A_2] + [A_1, A_3] + 2[A_2, A_3] \right) \\ & + \frac{1}{27216} (94[A_1, [A_1, A_2]] + 45[A_1, [A_1, A_3]] + 194[A_1, [A_2, A_3]] - 152[A_2, [A_1, A_2]] \\ & + 152[A_2, [A_2, A_3]] - 194[A_3, [A_1, A_2]] - 45[A_3, [A_1, A_3]] - 94[A_3, [A_2, A_3]]), \end{split}$$

Lanczos: Nested commutators $\Rightarrow \Theta_5(h)u$ costly. Large $\|\Theta_5\| \Rightarrow$ large m.

The exponentiation of the sixth-order Magnus expansion $\Theta_5(h) = \frac{1}{18}(5A_1 + 8A_2 + 5A_3) - \frac{\sqrt{15}}{108} (2[A_1, A_2] + [A_1, A_3] + 2[A_2, A_3]) \\ + \frac{1}{27216} (94[A_1, [A_1, A_2]] + 45[A_1, [A_1, A_3]] + 194[A_1, [A_2, A_3]] - 152[A_2, [A_1, A_2]] \\ + 152[A_2, [A_2, A_3]] - 194[A_3, [A_1, A_2]] - 45[A_3, [A_1, A_3]] - 94[A_3, [A_2, A_3]]),$

Lanczos: Nested commutators $\Rightarrow \Theta_5(h)u$ costly. Large $\|\Theta_5\| \Rightarrow$ large m.

• Fewer commutators Munthe-Kaas & Owren 99

$$\begin{split} \Theta_4(h) = & J_1 + \frac{1}{12}J_3 - \frac{1}{12}[J_1, J_2] + \frac{1}{240}[J_2, J_3] + \frac{1}{360}[J_1, [J_1, J_3]] \\ & - \frac{1}{240}[J_2, [J_1, J_2]] + \frac{1}{720}[J_1, [J_1, [J_1, J_2]]], \end{split}$$

The exponentiation of the sixth-order Magnus expansion $\Theta_5(h) = \frac{1}{18}(5A_1 + 8A_2 + 5A_3) - \frac{\sqrt{15}}{108}(2[A_1, A_2] + [A_1, A_3] + 2[A_2, A_3]) + \frac{1}{27216}(94[A_1, [A_1, A_2]] + 45[A_1, [A_1, A_3]] + 194[A_1, [A_2, A_3]] - 152[A_2, [A_1, A_2]] + 152[A_2, [A_2, A_3]] - 194[A_3, [A_1, A_2]] - 45[A_3, [A_1, A_3]] - 94[A_3, [A_2, A_3]]),$

Lanczos: Nested commutators $\Rightarrow \Theta_5(h)u$ costly. Large $\|\Theta_5\| \Rightarrow$ large m.

• Fewer commutators Munthe-Kaas & Owren 99

$$\begin{split} \Theta_4(h) = & J_1 + \frac{1}{12}J_3 - \frac{1}{12}[J_1, J_2] + \frac{1}{240}[J_2, J_3] + \frac{1}{360}[J_1, [J_1, J_3]] \\ & - \frac{1}{240}[J_2, [J_1, J_2]] + \frac{1}{720}[J_1, [J_1, [J_1, J_2]]], \end{split}$$

• Commutator-free splittings. Alvermann & Fehske 11,

$$\exp(\Theta_p) \approx \exp\left(\sum_{k=1}^n c_{1k}hA(t_k)\right) \dots \exp\left(\sum_{k=1}^n c_{pk}hA(t_k)\right).$$

The exponentiation of the sixth-order Magnus expansion $\Theta_5(h) = \frac{1}{18}(5A_1 + 8A_2 + 5A_3) - \frac{\sqrt{15}}{108} (2[A_1, A_2] + [A_1, A_3] + 2[A_2, A_3]) \\ + \frac{1}{27216} (94[A_1, [A_1, A_2]] + 45[A_1, [A_1, A_3]] + 194[A_1, [A_2, A_3]] - 152[A_2, [A_1, A_2]] \\ + 152[A_2, [A_2, A_3]] - 194[A_3, [A_1, A_2]] - 45[A_3, [A_1, A_3]] - 94[A_3, [A_2, A_3]]),$

Lanczos: Nested commutators $\Rightarrow \Theta_5(h)u$ costly. Large $\|\Theta_5\| \Rightarrow$ large m.

• Fewer commutators Munthe-Kaas & Owren 99

$$\begin{split} \Theta_4(h) = & J_1 + \frac{1}{12}J_3 - \frac{1}{12}[J_1, J_2] + \frac{1}{240}[J_2, J_3] + \frac{1}{360}[J_1, [J_1, J_3]] \\ & - \frac{1}{240}[J_2, [J_1, J_2]] + \frac{1}{720}[J_1, [J_1, [J_1, J_2]]], \end{split}$$

• Commutator-free splittings. Alvermann & Fehske 11,

$$\exp(\Theta_p) \approx \exp\left(\sum_{k=1}^n c_{1k} h A(t_k)\right) \dots \exp\left(\sum_{k=1}^n c_{pk} h A(t_k)\right).$$

• Solve commutators in algebra of differential operators.

$$\begin{split} \Theta_{2}(h) &= \mathrm{i}\Delta t \partial_{x}^{2} - \mathrm{i}\mu_{0,0}(h) - 2 \left\langle \partial_{x}\mu_{1,1}(h) \right\rangle_{1}, \\ \Theta_{3}(h) &= \Theta_{2}(h) + \mathrm{i}\Lambda \left[\psi\right]_{1,1}(h) + 2\mathrm{i} \left\langle \partial_{x}^{2}\mu_{2,1}(h) \right\rangle_{2} \end{split}$$

IKS 18. SIAM J. Num. Anal.

- The matrix exponential
- The Magnus expansion
- Specialised splittings for Schrödinger equation under laser potential
- Spin dynamics and control
 - Dynamics
 - Computation of gradients
 - Optimization strategies

Magnus expansion + Splittings

$$\partial_t \psi = \left(\mathrm{i}\varepsilon \Delta + \mathrm{i}\varepsilon^{-1}V(x,t)\right)\psi, \quad u(0) = u_0,$$

$$\partial_t \psi = \left(\mathrm{i}\varepsilon \Delta + \mathrm{i}\varepsilon^{-1}V(x,t)\right)\psi, \quad u(0) = u_0, \qquad A = \mathrm{i}h\Delta, \ B = -\mathrm{i}\int_0^h V(x,\xi)\,\mathrm{d}\xi$$

Asymptotic Magnus–Zassenhaus schemes: $e^{\frac{h}{2}A}e^{\frac{h}{2}B}e^{h^3R}e^{h^5S}e^{h^3R}e^{\frac{h}{2}B}e^{\frac{h}{2}A}$.

BIKS 16. Proc. Roy. Soc. A.; IKS 19. J. Comp. Phys.

$$\partial_t \psi = \left(\mathrm{i}\varepsilon \Delta + \mathrm{i}\varepsilon^{-1}V(x,t)\right)\psi, \quad u(0) = u_0, \qquad A = \mathrm{i}h\Delta, \ B = -\mathrm{i}\int_0^h V(x,\xi)\,\mathrm{d}\xi$$

For the Schrödinger equation under influence of laser,

$$\partial_t \psi = \left(\mathrm{i}\varepsilon \,\Delta - \mathrm{i}\varepsilon^{-1} \left(V_0(\boldsymbol{x}) + \boldsymbol{e}(\boldsymbol{t})^\top \boldsymbol{x} \right) \right) \psi,$$

$$\partial_t \psi = \left(\mathrm{i}\varepsilon \Delta + \mathrm{i}\varepsilon^{-1}V(x,t)\right)\psi, \quad u(0) = u_0, \qquad A = \mathrm{i}h\Delta, \ B = -\mathrm{i}\int_0^h V(x,\xi)\,\mathrm{d}\xi$$

For the Schrödinger equation under influence of laser,

$$\partial_t \psi = \left(i \varepsilon \Delta - i \varepsilon^{-1} \left(V_0(\mathbf{x}) + \mathbf{e}(\mathbf{t})^\top \mathbf{x} \right) \right) \psi,$$

using $[\Delta, a^{\top}x] = 2a^{\top}\nabla$, we can simplify the order four Magnus expansion to

$$\Theta_2(h) = ih\varepsilon\Delta - i\varepsilon^{-1}(hV_0 + \boldsymbol{r}^{\top}\boldsymbol{x}) - \boldsymbol{s}^{\top}\nabla$$

where $\mathbf{r} = \mu_0^e = \int_0^h \mathbf{e}(\zeta) \, \mathrm{d}\zeta$, and $\mathbf{s} = 2\mu_1^e = 2 \int_0^h \left(\zeta - \frac{h}{2}\right) \mathbf{e}(\zeta) \, \mathrm{d}\zeta$.

$$\partial_t \psi = \left(\mathrm{i}\varepsilon \Delta + \mathrm{i}\varepsilon^{-1}V(x,t)\right)\psi, \quad u(0) = u_0, \qquad A = \mathrm{i}h\Delta, \ B = -\mathrm{i}\int_0^h V(x,\xi)\,\mathrm{d}\xi$$

For the Schrödinger equation under influence of laser,

$$\partial_t \psi = \left(\mathrm{i} \varepsilon \, \Delta - \mathrm{i} \varepsilon^{-1} \left(V_0(\mathbf{x}) + \mathbf{e}(\mathbf{t})^\top \mathbf{x} \right) \right) \, \psi,$$

using $[\Delta, a^{\top}x] = 2a^{\top}\nabla$, we can simplify the order four Magnus expansion to

$$\Theta_2(h) = \mathrm{i}h\varepsilon\Delta - \mathrm{i}\varepsilon^{-1}(hV_0 + \mathbf{r}^{\top}\mathbf{x}) - \mathbf{s}^{\top}\nabla,$$

where $\mathbf{r} = \mu_0^e = \int_0^h e(\zeta) \,\mathrm{d}\zeta$, and $\mathbf{s} = 2\mu_1^e = 2\int_0^h (\zeta - \frac{h}{2}) \,\mathbf{e}(\zeta) \,\mathrm{d}\zeta$. Split:

$$e^{-\frac{1}{2}\boldsymbol{s}^{\top}\nabla_{e}ih\varepsilon\Delta-i\varepsilon^{-1}(hV_{0}+\boldsymbol{r}^{\top}\boldsymbol{x})}e^{-\frac{1}{2}\boldsymbol{s}^{\top}\nabla}$$
 Strang

$$\mathrm{e}^{-\frac{1}{6}\mathrm{i}h\varepsilon^{-1}\widetilde{V}}\mathrm{e}^{\frac{1}{2}\mathrm{i}h\varepsilon\Delta-\frac{1}{2}\mathbf{S}(t,h)^{\top}\nabla}\mathrm{e}^{-\frac{2}{3}\mathrm{i}h\varepsilon^{-1}\widehat{V}}\mathrm{e}^{\frac{1}{2}\mathrm{i}h\varepsilon\Delta-\frac{1}{2}\mathbf{S}(t,h)^{\top}\nabla}\mathrm{e}^{-\frac{1}{6}\mathrm{i}h\varepsilon^{-1}\widetilde{V}}$$
Compact

W

$$\partial_t \psi = \left(\mathrm{i}\varepsilon \Delta + \mathrm{i}\varepsilon^{-1}V(x,t)\right)\psi, \quad u(0) = u_0, \qquad A = \mathrm{i}h\Delta, \ B = -\mathrm{i}\int_0^h V(x,\xi)\,\mathrm{d}\xi$$

Asymptotic Magnus–Zassenhaus schemes: $e^{\frac{h}{2}A}e^{\frac{h}{2}B}e^{h^3R}e^{h^5S}e^{h^3R}e^{\frac{h}{2}B}e^{\frac{h}{2}A}$. BIKS 16. Proc. Roy. Soc. A.; IKS 19. J. Comp. Phys.

For the Schrödinger equation under influence of laser,

$$\partial_t \psi = \left(\mathrm{i} \varepsilon \, \Delta - \mathrm{i} \varepsilon^{-1} \left(V_0(\mathbf{x}) + \mathbf{e}(\mathbf{t})^\top \mathbf{x} \right) \right) \, \psi,$$

using $[\Delta, a^{\top}x] = 2a^{\top}\nabla$, we can simplify the order four Magnus expansion to

$$\Theta_{2}(h) = i\hbar\varepsilon\Delta - i\varepsilon^{-1}(hV_{0} + \mathbf{r}^{\top}\mathbf{x}) - \mathbf{s}^{\top}\nabla,$$

here $\mathbf{r} = \mu_{0}^{e} = \int_{0}^{h} \mathbf{e}(\zeta) \,\mathrm{d}\zeta$, and $\mathbf{s} = 2\mu_{1}^{e} = 2\int_{0}^{h}(\zeta - \frac{h}{2}) \,\mathbf{e}(\zeta) \,\mathrm{d}\zeta$. Split:
 $\mathrm{e}^{-\frac{1}{2}\mathbf{s}^{\top}\nabla}\mathrm{e}^{\mathrm{i}\hbar\varepsilon\Delta - \mathrm{i}\varepsilon^{-1}(hV_{0} + \mathbf{r}^{\top}\mathbf{x})}\mathrm{e}^{-\frac{1}{2}\mathbf{s}^{\top}\nabla}$ Strang

$$e^{-\frac{1}{6}i\hbar\varepsilon^{-1}V}e^{\frac{1}{2}i\hbar\varepsilon\Delta-\frac{1}{2}\boldsymbol{s}(t,h)^{\top}\nabla}e^{-\frac{2}{3}i\hbar\varepsilon^{-1}V}e^{\frac{1}{2}i\hbar\varepsilon\Delta-\frac{1}{2}\boldsymbol{s}(t,h)^{\top}\nabla}e^{-\frac{1}{6}i\hbar\varepsilon^{-1}V}$$
Compact

• Strang - reuse any existing fourth order method for the central exponent.

$$\partial_t \psi = \left(\mathrm{i}\varepsilon \Delta + \mathrm{i}\varepsilon^{-1}V(x,t)\right)\psi, \quad u(0) = u_0, \qquad A = \mathrm{i}h\Delta, \ B = -\mathrm{i}\int_0^h V(x,\xi)\,\mathrm{d}\xi$$

For the Schrödinger equation under influence of laser,

$$\partial_t \psi = \left(\mathrm{i} \varepsilon \, \Delta - \mathrm{i} \varepsilon^{-1} \left(V_0(\mathbf{x}) + \mathbf{e}(\mathbf{t})^\top \mathbf{x} \right) \right) \, \psi,$$

using $[\Delta, \mathbf{a}^{\top} \mathbf{x}] = 2\mathbf{a}^{\top} \nabla$, we can simplify the order four Magnus expansion to

$$\mathrm{e}^{-\frac{1}{6}\mathrm{i}h\varepsilon^{-1}\widetilde{V}}\mathrm{e}^{\frac{1}{2}\mathrm{i}h\varepsilon\Delta-\frac{1}{2}\boldsymbol{s}(t,h)^{\top}\nabla}\mathrm{e}^{-\frac{2}{3}\mathrm{i}h\varepsilon^{-1}\widehat{V}}\mathrm{e}^{\frac{1}{2}\mathrm{i}h\varepsilon\Delta-\frac{1}{2}\boldsymbol{s}(t,h)^{\top}\nabla}\mathrm{e}^{-\frac{1}{6}\mathrm{i}h\varepsilon^{-1}\widetilde{V}}$$
Compact

- Strang reuse any existing fourth order method for the central exponent.
- Compact same cost as time-independent Hamiltonian!

wł

Numerical examples

15

Magnus–Compact fourth-order

Proposed O4	Iserles, Kropielnicka & S., Comput. Phys. Commun. (2019)
6IKS	Iserles, Kropielnicka & S., J. Comput. Phys. (2019).
6BIKS	Iserles, Kropielnicka & S., Proc. Roy. Soc. A (2016).
6AF	Alvermann & Fehske, J. Comput. Phys. (2011).
Magnus-Compact sixth-order

The sixth-order Magnus expansion

$$\Theta_4 = \mathrm{i}h\varepsilon\Delta - \mathrm{i}\varepsilon^{-1}(hV_0(\mathbf{x}) + \mathbf{r}^{\top}\mathbf{x}) - \mathbf{s}^{\top}\nabla + \mathrm{i}\varepsilon^{-1}\mathbf{q}^{\top}(\nabla V_0) + \left[\Delta, \mathbf{p}^{\top}(\nabla V_0)\right] + c,$$

can be split as

 $\mathrm{e}^{3\mathrm{i}h^{-2}\varepsilon^{-1}\boldsymbol{q}^{\top}\boldsymbol{x}}\mathrm{e}^{-6h^{-2}\boldsymbol{\rho}^{\top}\nabla}\mathrm{e}^{(\mathrm{i}h\varepsilon\Delta-\tilde{\boldsymbol{s}}^{\top}\nabla)+(-\mathrm{i}h\varepsilon^{-1}\tilde{\boldsymbol{V}}-6\mathrm{i}h^{-2}\varepsilon^{-1}\boldsymbol{q}^{\top}\boldsymbol{x}+\tilde{\boldsymbol{\varepsilon}})}\mathrm{e}^{-6h^{-2}\boldsymbol{\rho}^{\top}\nabla}\mathrm{e}^{3\mathrm{i}h^{-2}\varepsilon^{-1}\boldsymbol{q}^{\top}\boldsymbol{x}+\tilde{\boldsymbol{\varepsilon}})}$

Proposed O6 S., J. Chem. Phys. (2019). Time Ordered O6 Omelyan, Mryglod & Folk, Comput. Phys. Commun. (2003).

- The matrix exponential
- The Magnus expansion
- Specialised splittings for Schrödinger equation under laser potential
- Spin dynamics and control
 - Dynamics
 - Computation of gradients
 - Optimization strategies

The Liouville-von Neumann equation,

$$\partial_t \rho = \mathcal{L}(t)\rho$$

describes the dynamics of spins under the influence of a changing magnetic field.

The Liouville-von Neumann equation,

$$\partial_t \rho = \mathcal{L}(t)\rho$$

describes the dynamics of spins under the influence of a changing magnetic field.

Initial assumption: no dissipation $\mathcal{L}(t) = -i \operatorname{ad}_{H(t)}$.

The Liouville-von Neumann equation,

$$\partial_t \rho = \mathcal{L}(t)\rho$$

describes the dynamics of spins under the influence of a changing magnetic field.

Initial assumption: no dissipation $\mathcal{L}(t) = -i \operatorname{ad}_{H(t)}$.

Later: relaxation $\mathcal{L}(t) = -i \operatorname{ad}_{H(t)} + \mathcal{R}$.

Solution of

$$\rho(t)' = -\mathrm{i}[\mathrm{H}(t), \rho(t)], \qquad \rho(0) = \rho_0,$$

is given by

$$\rho(h) = \operatorname{Ad}_{e^{\Theta(h)}} \rho_0 = e^{\Theta(h)} \rho_0 e^{-\Theta(h)}.$$

Solution of

$$\rho(t)' = -\mathrm{i}[\mathrm{H}(t), \rho(t)], \qquad \rho(0) = \rho_0,$$

is given by

$$\rho(h) = \operatorname{Ad}_{e^{\Theta(h)}} \rho_0 = e^{\Theta(h)} \rho_0 e^{-\Theta(h)}.$$

For a single spin,

$$H(t) = \boldsymbol{e}(t) \cdot \boldsymbol{\sigma}, \quad \boldsymbol{e}(t) = (\boldsymbol{f}(t), \boldsymbol{g}(t), \Omega), \quad \boldsymbol{\sigma} = (\sigma_x, \sigma_y, \sigma_z), \\ \sigma_x = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Solution of

$$\rho(t)' = -\mathrm{i}[\mathrm{H}(t), \rho(t)], \qquad \rho(0) = \rho_0,$$

is given by

$$\rho(h) = \operatorname{Ad}_{e^{\Theta(h)}} \rho_0 = e^{\Theta(h)} \rho_0 e^{-\Theta(h)}.$$

For a single spin,

$$H(t) = \boldsymbol{e}(t) \cdot \boldsymbol{\sigma}, \quad \boldsymbol{e}(t) = (\boldsymbol{f}(t), \boldsymbol{g}(t), \Omega), \quad \boldsymbol{\sigma} = (\sigma_x, \sigma_y, \sigma_z), \\ \sigma_x = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Since $\mathfrak{su}(2)$ is a finite dimensional Lie algebra spanned by $i\sigma_x, i\sigma_y, i\sigma_z$, with commutator identities

$$[\sigma_x, \sigma_y] = \mathrm{i}\sigma_z, \quad [\sigma_y, \sigma_z] = \mathrm{i}\sigma_x, \quad [\sigma_z, \sigma_x] = \mathrm{i}\sigma_y,$$

 $\Theta(h) = -i\mathbf{a}(h) \cdot \boldsymbol{\sigma}$ for some $\mathbf{a}(h) \in \mathbb{R}^3$.

Solution of

$$\rho(t)' = -\mathrm{i}[\mathrm{H}(t), \rho(t)], \qquad \rho(0) = \rho_0,$$

is given by

$$\rho(h) = \operatorname{Ad}_{e^{\Theta(h)}} \rho_0 = e^{\Theta(h)} \rho_0 e^{-\Theta(h)}.$$

For a single spin,

$$H(t) = \boldsymbol{e}(t) \cdot \boldsymbol{\sigma}, \quad \boldsymbol{e}(t) = (\boldsymbol{f}(t), \boldsymbol{g}(t), \Omega), \quad \boldsymbol{\sigma} = (\sigma_x, \sigma_y, \sigma_z), \\ \sigma_x = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Since $\mathfrak{su}(2)$ is a finite dimensional Lie algebra spanned by $i\sigma_x, i\sigma_y, i\sigma_z$, with commutator identities

$$[\sigma_x, \sigma_y] = i\sigma_z, \quad [\sigma_y, \sigma_z] = i\sigma_x, \quad [\sigma_z, \sigma_x] = i\sigma_y,$$

 $\Theta(h) = -ia(h) \cdot \sigma$ for some $a(h) \in \mathbb{R}^3$. The exact solution should be expressible as

$$\rho(h) = e^{-i\boldsymbol{a}(h)\cdot\boldsymbol{\sigma}} \rho_0 e^{i\boldsymbol{a}(h)\cdot\boldsymbol{\sigma}},$$

so long as one can find the correct **a**.

For single spin, the exponential can be computed exactly,

$$\mathrm{e}^{-\mathrm{i}\boldsymbol{a}\cdot\boldsymbol{\sigma}} = \begin{pmatrix} \cos(\|\boldsymbol{a}\|/2) - \mathrm{i}a_{z}\frac{\sin(\|\boldsymbol{a}\|/2)}{\|\boldsymbol{a}\|} & (-\mathrm{i}a_{x} - a_{y})\frac{\sin(\|\boldsymbol{a}\|/2)}{\|\boldsymbol{a}\|} \\ (-\mathrm{i}a_{x} + a_{y})\frac{\sin(\|\boldsymbol{a}\|/2)}{\|\boldsymbol{a}\|} & \cos(\|\boldsymbol{a}\|/2) + \mathrm{i}a_{z}\frac{\sin(\|\boldsymbol{a}\|/2)}{\|\boldsymbol{a}\|} \end{pmatrix},$$

provided we have a good approximation of **a**.

For single spin, the exponential can be computed exactly,

$$\mathrm{e}^{-\mathrm{i}\boldsymbol{a}\cdot\boldsymbol{\sigma}} = \begin{pmatrix} \cos(\|\boldsymbol{a}\|/2) - \mathrm{i}a_{z}\frac{\sin(\|\boldsymbol{a}\|/2)}{\|\boldsymbol{a}\|} & (-\mathrm{i}a_{x} - a_{y})\frac{\sin(\|\boldsymbol{a}\|/2)}{\|\boldsymbol{a}\|} \\ (-\mathrm{i}a_{x} + a_{y})\frac{\sin(\|\boldsymbol{a}\|/2)}{\|\boldsymbol{a}\|} & \cos(\|\boldsymbol{a}\|/2) + \mathrm{i}a_{z}\frac{\sin(\|\boldsymbol{a}\|/2)}{\|\boldsymbol{a}\|} \end{pmatrix},$$

provided we have a good approximation of *a*.

$$H(t) = \boldsymbol{e}(t) \cdot \boldsymbol{\sigma}, \quad \boldsymbol{e}(t) = (f(t), g(t), \Omega),$$

Order 2 Magnus:

$$\boldsymbol{a} = \boldsymbol{r} := \mu_0^e = \int_0^h \boldsymbol{e}(\zeta) \,\mathrm{d}\zeta = (\mu_0^f, \mu_0^g, h\Omega)$$

For single spin, the exponential can be computed exactly,

$$\mathrm{e}^{-\mathrm{i}\boldsymbol{a}\cdot\boldsymbol{\sigma}} = \begin{pmatrix} \cos(\|\boldsymbol{a}\|/2) - \mathrm{i}a_{z}\frac{\sin(\|\boldsymbol{a}\|/2)}{\|\boldsymbol{a}\|} & (-\mathrm{i}a_{x} - a_{y})\frac{\sin(\|\boldsymbol{a}\|/2)}{\|\boldsymbol{a}\|} \\ (-\mathrm{i}a_{x} + a_{y})\frac{\sin(\|\boldsymbol{a}\|/2)}{\|\boldsymbol{a}\|} & \cos(\|\boldsymbol{a}\|/2) + \mathrm{i}a_{z}\frac{\sin(\|\boldsymbol{a}\|/2)}{\|\boldsymbol{a}\|} \end{pmatrix},$$

provided we have a good approximation of a.

$$H(t) = \boldsymbol{e}(t) \cdot \boldsymbol{\sigma}, \quad \boldsymbol{e}(t) = (f(t), g(t), \Omega),$$

Order 2 Magnus:

$$\boldsymbol{a} = \boldsymbol{r} := \mu_0^e = \int_0^h \boldsymbol{e}(\zeta) \, \mathrm{d}\zeta = (\mu_0^f, \mu_0^g, h\Omega)$$

Order 4 Magnus: a = r + s where

$$\boldsymbol{s} = \left(\Omega\mu_1^{\boldsymbol{g}}, -\Omega\mu_1^{\boldsymbol{f}}, -\frac{1}{2}\Lambda^{\boldsymbol{f}, \boldsymbol{g}}\right).$$

For multiple spins, only Ω changes, so integrals need to be computed once.

$$\mathrm{H}(t) = \underline{e}(t) \cdot \underline{L}, \qquad \underline{e}(t) = (\underline{f}(t)\underline{1}, \ \underline{g}(t)\underline{1}, \ \underline{\Omega}), \qquad \underline{L} = (\underline{L}_x, \underline{L}_y, \underline{L}_z),$$

 $\mathrm{H}(t) = \underline{e}(t) \cdot \underline{L}, \qquad \underline{e}(t) = (\underline{f}(t)\underline{1}, \ \underline{g}(t)\underline{1}, \ \underline{\Omega}), \qquad \underline{L} = (\underline{L}_x, \underline{L}_y, \underline{L}_z),$

Coupling between multiple interacting spins described by Hamiltonian H_J . The overall Hamiltonian for coupled spins is

$$\mathrm{H}(t) = \underline{e}(t) \cdot \underline{L} + \mathrm{H}_{J}.$$

 $H(t) = \underline{e}(t) \cdot \underline{L}, \qquad \underline{e}(t) = (\underline{f(t)}\underline{1}, \ \underline{g(t)}\underline{1}, \ \underline{\Omega}), \qquad \underline{L} = (\underline{L}_x, \underline{L}_y, \underline{L}_z),$

Coupling between multiple interacting spins described by Hamiltonian H_J . The overall Hamiltonian for coupled spins is

$$\mathbf{H}(t) = \underline{\mathbf{e}}(t) \cdot \underline{\mathbf{L}} + \mathbf{H}_{\mathbf{J}}.$$

Order 4 Magnus expansion in MagPy (Danny Goodacre (MMath at Bath)).

$$\mathrm{H}(t) = \underline{e}(t) \cdot \underline{L}, \qquad \underline{e}(t) = (\underline{f}(t)\underline{1}, \ \underline{g}(t)\underline{1}, \ \underline{\Omega}), \qquad \underline{L} = (\underline{L}_x, \underline{L}_y, \underline{L}_z),$$

Coupling between multiple interacting spins described by Hamiltonian H_J . The overall Hamiltonian for coupled spins is

$$\mathbf{H}(t) = \underline{\mathbf{e}}(t) \cdot \underline{\mathbf{L}} + \mathbf{H}_{\mathbf{J}}.$$

Order 4 Magnus expansion in MagPy (Danny Goodacre (MMath at Bath)). More efficient version coming soon. N = 3 spins, 3 qubits.

BCFS 23. In preparation. MagPy 'pip install magpy'. git: github.com/brownadder/magpy

- The matrix exponential
- The Magnus expansion
- Specialised splittings for Schrödinger equation under laser potential
- Spin dynamics and control
 - Dynamics
 - Computation of gradients
 - Optimization strategies

Let solution of

$$\partial_t \rho = \mathcal{L}(t;\theta) \rho$$

at time t be given by $\rho(t) = \mathbf{U}(t; \theta)\rho_0$.

Let solution of

$$\partial_t \rho = \mathcal{L}(t; \theta) \rho$$

at time t be given by $\rho(t) = \mathbf{U}(t;\theta)\rho_0$.

Fidelity functions

$$\mathcal{F}(\theta) = f(\mathbf{U}(T;\theta))$$

state-to-state

gate design

e.g.

$$egin{aligned} f(X) &= \Re \left[\operatorname{Tr} \left(arrho^\dagger X
ho_0
ight)
ight] \ f(X) &= \Re \left[\operatorname{Tr} \left(\mathbf{U}^\dagger_{ ext{target}} X
ight)
ight] \end{aligned}$$

Let solution of

$$\partial_t \rho = \mathcal{L}(t; \theta) \rho$$

at time t be given by $\rho(t) = \mathbf{U}(t;\theta)\rho_0$.

Fidelity functions

$$\mathcal{F}(\theta) = f(\mathbf{U}(T;\theta))$$

e.g.

$$\begin{split} f(X) &= \Re \left[\operatorname{Tr} \left(\varrho^{\dagger} X \rho_0 \right) \right] & \text{state-to-state} \\ f(X) &= \Re \left[\operatorname{Tr} \left(\mathsf{U}_{\mathrm{target}}^{\dagger} X \right) \right] & \text{gate design} \end{split}$$

Aim: Maximize fidelity:

$$\theta^* = \operatorname*{argmax}_{ heta} \mathcal{F}(heta)$$

Let solution of

$$\partial_t \rho = \mathcal{L}(t; \theta) \rho$$

at time t be given by $\rho(t) = \mathbf{U}(t;\theta)\rho_0$.

Fidelity functions

$$\mathcal{F}(\theta) = f(\mathbf{U}(T;\theta))$$

e.g.

$$\begin{split} f(X) &= \Re \left[\operatorname{Tr} \left(\varrho^{\dagger} X \rho_0 \right) \right] & \text{state-to-state} \\ f(X) &= \Re \left[\operatorname{Tr} \left(\mathbf{U}_{\mathrm{target}}^{\dagger} X \right) \right] & \text{gate design} \end{split}$$

Aim: Maximize fidelity:

$$heta^* = \operatorname*{argmax}_{ heta} \, \mathcal{F}(heta)$$

Local optimization: need gradients

$$\frac{\partial \mathcal{F}}{\partial \theta} = \mathsf{D}f(\mathsf{U}(T;\theta))\frac{\partial \mathsf{U}(T;\theta)}{\partial \theta},$$

and Hessians.

Single spin $H(t; \theta) = \boldsymbol{e}(t; \theta) \cdot \boldsymbol{\sigma}$.

Single spin $H(t; \theta) = e(t; \theta) \cdot \sigma$. No dissipation $\mathcal{L}(t; \theta) = -i \operatorname{ad}_{H(t;\theta)}$.

Single spin $H(t; \theta) = e(t; \theta) \cdot \sigma$. No dissipation $\mathcal{L}(t; \theta) = -i \operatorname{ad}_{H(t;\theta)}$. Piecewise constant $e(t; \theta)$ (*n*th piece described by $\theta_{n,k}$, k = 1, 2.).

Single spin $H(t; \theta) = e(t; \theta) \cdot \sigma$. No dissipation $\mathcal{L}(t; \theta) = -i \operatorname{ad}_{H(t;\theta)}$. Piecewise constant $e(t; \theta)$ (*n*th piece described by $\theta_{n,k}$, k = 1, 2.).

 $\mathbf{U}(T;\theta) = \mathbf{U}_{N}\mathbf{U}_{N-1}\cdots\mathbf{U}_{2}\mathbf{U}_{1}, \quad \text{with} \quad \mathbf{U}_{n} = e^{-\mathbf{i}\boldsymbol{s}_{n}\cdot\boldsymbol{\sigma}},$

Single spin $H(t; \theta) = e(t; \theta) \cdot \sigma$. No dissipation $\mathcal{L}(t; \theta) = -i \operatorname{ad}_{H(t;\theta)}$. Piecewise constant $e(t; \theta)$ (nth piece described by $\theta_{n,k}$, k = 1, 2.).

$$\begin{split} \mathsf{J}(\mathsf{T};\theta) &= \mathrm{U}_{\mathsf{N}}\mathrm{U}_{\mathsf{N}-1}\cdots\mathrm{U}_{2}\mathrm{U}_{1}, \qquad \text{with} \quad \mathrm{U}_{n} = \mathrm{e}^{-\mathrm{i}\mathfrak{s}_{n}\cdot\boldsymbol{\sigma}}, \\ \mathrm{L}_{n} &:= \mathrm{U}_{\mathsf{N}}\mathrm{U}_{\mathsf{N}-1}\ldots\mathrm{U}_{n}, \qquad \mathrm{R}_{n} := \mathrm{U}_{n}\mathrm{U}_{n-1}\ldots\mathrm{U}_{1}, \qquad \mathcal{O}(\mathsf{N}) \end{split}$$

$$\frac{\partial \mathbf{U}}{\partial \theta_{n,k}} = \mathbf{L}_{n+1} \frac{\partial \mathbf{U}_n}{\partial \theta_{n,k}} \mathbf{R}_{n-1}, \qquad \frac{\partial \mathbf{U}_n}{\partial \theta_{n,k}} = -\mathrm{i} \mathbf{U}_n \left(\left[\mathbf{D}_n \frac{\partial \mathbf{s}_n}{\partial \theta_{n,k}} \right] \cdot \boldsymbol{\sigma} \right),$$

Single spin $H(t; \theta) = e(t; \theta) \cdot \sigma$. No dissipation $\mathcal{L}(t; \theta) = -i \operatorname{ad}_{H(t;\theta)}$. Piecewise constant $e(t; \theta)$ (nth piece described by $\theta_{n,k}$, k = 1, 2.).

$$\begin{split} \mathsf{J}(\mathsf{T};\theta) &= \mathrm{U}_{\mathsf{N}}\mathrm{U}_{\mathsf{N}-1}\cdots\mathrm{U}_{2}\mathrm{U}_{1}, \qquad \text{with} \quad \mathrm{U}_{n} = \mathrm{e}^{-\mathrm{i}\mathsf{s}_{n}\cdot\boldsymbol{\sigma}}, \\ \mathrm{L}_{n} &:= \mathrm{U}_{\mathsf{N}}\mathrm{U}_{\mathsf{N}-1}\ldots\mathrm{U}_{n}, \qquad \mathrm{R}_{n} := \mathrm{U}_{n}\mathrm{U}_{n-1}\ldots\mathrm{U}_{1}, \qquad \mathcal{O}(\mathsf{N}) \end{split}$$

$$\frac{\partial \mathbf{U}}{\partial \theta_{n,k}} = \mathbf{L}_{n+1} \frac{\partial \mathbf{U}_n}{\partial \theta_{n,k}} \mathbf{R}_{n-1}, \qquad \frac{\partial \mathbf{U}_n}{\partial \theta_{n,k}} = -\mathrm{i} \mathbf{U}_n \left(\left[\mathbf{D}_n \frac{\partial \mathbf{s}_n}{\partial \theta_{n,k}} \right] \cdot \boldsymbol{\sigma} \right),$$

where

$$D_n = \sum_{p=0}^{\infty} \frac{(-S_n)^p}{(p+1)!} = I + c_1 S_n + c_2 S_n^2, \qquad S_n = \begin{pmatrix} 0 & -s_{n,z} & s_{n,y} \\ s_{n,z} & 0 & -s_{n,x} \\ -s_{n,y} & s_{n,x} & 0 \end{pmatrix}.$$

Single spin $H(t; \theta) = e(t; \theta) \cdot \sigma$. No dissipation $\mathcal{L}(t; \theta) = -i \operatorname{ad}_{H(t;\theta)}$. Piecewise constant $e(t; \theta)$ (nth piece described by $\theta_{n,k}$, k = 1, 2.).

$$\begin{aligned} \mathsf{J}(\mathcal{T};\theta) &= \mathsf{U}_{N}\mathsf{U}_{N-1}\cdots\mathsf{U}_{2}\mathsf{U}_{1}, & \text{with} \quad \mathsf{U}_{n} = \mathrm{e}^{-\mathrm{i}s_{n}\cdot\sigma}, \\ \mathsf{L}_{n} &:= \mathsf{U}_{N}\mathsf{U}_{N-1}\ldots\mathsf{U}_{n}, & \mathsf{R}_{n} &:= \mathsf{U}_{n}\mathsf{U}_{n-1}\ldots\mathsf{U}_{1}, & \mathcal{O}(\mathcal{N}) \\ \mathsf{M}_{n,m} &:= \mathsf{U}_{n}\mathsf{U}_{n-1}\ldots\mathsf{U}_{m-1}\mathsf{U}_{m}. & \mathcal{O}\left(\mathcal{N}^{2}\right) \end{aligned}$$

$$\frac{\partial \mathbf{U}}{\partial \theta_{n,k}} = \mathbf{L}_{n+1} \frac{\partial \mathbf{U}_n}{\partial \theta_{n,k}} \mathbf{R}_{n-1}, \qquad \frac{\partial \mathbf{U}_n}{\partial \theta_{n,k}} = -\mathrm{i} \mathbf{U}_n \left(\left[\mathbf{D}_n \frac{\partial \mathbf{s}_n}{\partial \theta_{n,k}} \right] \cdot \boldsymbol{\sigma} \right),$$

where

$$D_n = \sum_{p=0}^{\infty} \frac{(-S_n)^p}{(p+1)!} = I + c_1 S_n + c_2 S_n^2, \qquad S_n = \begin{pmatrix} 0 & -s_{n,z} & s_{n,y} \\ s_{n,z} & 0 & -s_{n,x} \\ -s_{n,y} & s_{n,x} & 0 \end{pmatrix}.$$

$$\frac{\partial^{2} \mathbf{U}}{\partial \theta_{m,j} \partial \theta_{n,k}} = \mathcal{L}_{n+1} \frac{\partial \mathcal{U}_{n}}{\partial \theta_{n,k}} \mathcal{M}_{n-1,m+1} \frac{\partial \mathcal{U}_{m}}{\partial \theta_{m,j}} \mathcal{R}_{m-1}$$

Single spin $H(t; \theta) = e(t; \theta) \cdot \sigma$. No dissipation $\mathcal{L}(t; \theta) = -i \operatorname{ad}_{H(t;\theta)}$. Piecewise constant $e(t; \theta)$ (nth piece described by $\theta_{n,k}$, k = 1, 2.).

$$\begin{aligned} \mathsf{J}(\mathsf{T};\theta) &= \mathrm{U}_{\mathsf{N}}\mathrm{U}_{\mathsf{N}-1}\cdots\mathrm{U}_{2}\mathrm{U}_{1}, & \text{with} \quad \mathrm{U}_{n} = \mathrm{e}^{-\mathrm{i}s_{n}\cdot\sigma}, \\ \mathrm{L}_{n} &:= \mathrm{U}_{\mathsf{N}}\mathrm{U}_{\mathsf{N}-1}\ldots\mathrm{U}_{n}, & \mathrm{R}_{n} &:= \mathrm{U}_{n}\mathrm{U}_{n-1}\ldots\mathrm{U}_{1}, & \mathcal{O}(\mathsf{N}) \\ \mathrm{M}_{\mathsf{n},\mathsf{m}} &:= \mathrm{U}_{n}\mathrm{U}_{\mathsf{n}-1}\ldots\mathrm{U}_{\mathsf{m}-1}\mathrm{U}_{\mathsf{m}}. & \mathcal{O}\left(\mathsf{N}^{2}\right) \end{aligned}$$

$$\frac{\partial \mathbf{U}}{\partial \theta_{n,k}} = \mathcal{L}_{n+1} \frac{\partial \mathcal{U}_n}{\partial \theta_{n,k}} \mathcal{R}_{n-1}, \qquad \frac{\partial \mathcal{U}_n}{\partial \theta_{n,k}} = -\mathrm{i} \mathcal{U}_n \left(\left[\mathbf{D}_n \frac{\partial \mathbf{s}_n}{\partial \theta_{n,k}} \right] \cdot \boldsymbol{\sigma} \right),$$

where

$$\boldsymbol{D}_n = \sum_{p=0}^{\infty} \frac{(-\boldsymbol{S}_n)^p}{(p+1)!} = \boldsymbol{I} + c_1 \boldsymbol{S}_n + c_2 \boldsymbol{S}_n^2, \qquad \boldsymbol{S}_n = \begin{pmatrix} 0 & -s_{n,z} & s_{n,y} \\ s_{n,z} & 0 & -s_{n,x} \\ -s_{n,y} & s_{n,x} & 0 \end{pmatrix}.$$

$$\frac{\partial^2 \mathbf{U}}{\partial \theta_{m,j} \partial \theta_{n,k}} = \mathcal{L}_{n+1} \frac{\partial \mathcal{U}_n}{\partial \theta_{n,k}} \mathcal{M}_{n-1,m+1} \frac{\partial \mathcal{U}_m}{\partial \theta_{m,j}} \mathcal{R}_{m-1} = \mathcal{L}_{n+1} \frac{\partial \mathcal{U}_n}{\partial \theta_{n,k}} \mathcal{L}_n^* \mathbf{U} \mathcal{R}_m^* \frac{\partial \mathcal{U}_m}{\partial \theta_{m,j}} \mathcal{R}_{m-1}.$$

Single spin $H(t; \theta) = e(t; \theta) \cdot \sigma$. No dissipation $\mathcal{L}(t; \theta) = -i \operatorname{ad}_{H(t;\theta)}$. Piecewise constant $e(t; \theta)$ (nth piece described by $\theta_{n,k}$, k = 1, 2.).

$$\begin{aligned} \mathsf{J}(\mathsf{T};\theta) &= \mathrm{U}_{\mathsf{N}}\mathrm{U}_{\mathsf{N}-1}\cdots\mathrm{U}_{2}\mathrm{U}_{1}, & \text{with} \quad \mathrm{U}_{n} = \mathrm{e}^{-\mathrm{i}s_{n}\cdot\sigma}, \\ \mathrm{L}_{n} &:= \mathrm{U}_{\mathsf{N}}\mathrm{U}_{\mathsf{N}-1}\ldots\mathrm{U}_{n}, & \mathrm{R}_{n} &:= \mathrm{U}_{n}\mathrm{U}_{n-1}\ldots\mathrm{U}_{1}, & \mathcal{O}(\mathsf{N}) \\ \mathrm{M}_{\mathsf{n},\mathsf{m}} &:= \mathrm{U}_{n}\mathrm{U}_{\mathsf{n}-1}\ldots\mathrm{U}_{\mathsf{m}-1}\mathrm{U}_{\mathsf{m}}. & \mathcal{O}\left(\mathsf{N}^{2}\right) \end{aligned}$$

$$\frac{\partial \mathbf{U}}{\partial \theta_{n,k}} = \mathcal{L}_{n+1} \frac{\partial \mathcal{U}_n}{\partial \theta_{n,k}} \mathcal{R}_{n-1}, \qquad \frac{\partial \mathcal{U}_n}{\partial \theta_{n,k}} = -\mathrm{i} \mathcal{U}_n \left(\left[\mathbf{D}_n \frac{\partial \mathbf{s}_n}{\partial \theta_{n,k}} \right] \cdot \boldsymbol{\sigma} \right),$$

where

$$D_n = \sum_{p=0}^{\infty} \frac{(-S_n)^p}{(p+1)!} = I + c_1 S_n + c_2 S_n^2, \qquad S_n = \begin{pmatrix} 0 & -s_{n,z} & s_{n,y} \\ s_{n,z} & 0 & -s_{n,x} \\ -s_{n,y} & s_{n,x} & 0 \end{pmatrix}.$$

$$\frac{\partial^2 \mathbf{U}}{\partial \theta_{m,j} \partial \theta_{n,k}} = \mathcal{L}_{n+1} \frac{\partial \mathcal{U}_n}{\partial \theta_{n,k}} \mathcal{M}_{n-1,m+1} \frac{\partial \mathcal{U}_m}{\partial \theta_{m,j}} \mathcal{R}_{m-1} = \mathcal{L}_{n+1} \frac{\partial \mathcal{U}_n}{\partial \theta_{n,k}} \mathcal{L}_n^* \mathbf{U} \mathcal{R}_m^* \frac{\partial \mathcal{U}_m}{\partial \theta_{m,j}} \mathcal{R}_{m-1}.$$

Speedup: $\times 2 - 10$ fidelity, $\times 4 - 30$ gradient, $\times 20 - 600$ Hessian.

Foroozandeh & S. 22. Automatica. ESCALADE doi:10.17632/8zz84359m5 David L. Goodwin & Mads Sloth Vinding. arXiv:2207.09882 [math.0C]

Liouville-von Neumann equation

$$\partial_t \rho = \mathcal{L}(t; \theta) \rho$$

Liouville-von Neumann equation

$$\partial_t \rho = \mathcal{L}(t; \theta) \rho$$

In general,

$$\mathcal{L}(t;\theta) = \mathcal{L}^{[1]}(t;\theta) + \mathcal{L}^{[2]}, \quad \mathcal{L}^{[1]}(t;\theta) = -\mathrm{i}\,\mathrm{ad}_{\underline{\boldsymbol{e}}(t;\theta)} \cdot \underline{\boldsymbol{L}}, \quad \mathcal{L}^{[2]} = -\mathrm{i}\,\mathrm{ad}_{\mathrm{H}_J} + \mathcal{R}$$

Liouville-von Neumann equation

$$\partial_t \rho = \mathcal{L}(t; \theta) \rho$$

In general,

$$\mathcal{L}(t;\theta) = \mathcal{L}^{[1]}(t;\theta) + \mathcal{L}^{[2]}, \quad \mathcal{L}^{[1]}(t;\theta) = -\mathrm{i} \operatorname{ad}_{\underline{\boldsymbol{\varrho}}(t;\theta)} \cdot \underline{\boldsymbol{L}}, \quad \mathcal{L}^{[2]} = -\mathrm{i} \operatorname{ad}_{\mathrm{H}_J} + \mathcal{R}$$

Simplification: e(t) piecewise constant, so that in *n*th piece,

$$\mathcal{L}(t;\theta) = \mathcal{L}_n(\theta) = \mathcal{L}_n^{[1]}(\theta) + \mathcal{L}^{[2]}, \qquad \mathcal{L}_n^{[1]}(\theta) = -\mathrm{i} \operatorname{ad}_{\underline{\boldsymbol{e}}_n(\theta)} \cdot \underline{\boldsymbol{L}}$$

Liouville-von Neumann equation

$$\partial_t \rho = \mathcal{L}(t; \theta) \rho$$

In general,

$$\mathcal{L}(t;\theta) = \mathcal{L}^{[1]}(t;\theta) + \mathcal{L}^{[2]}, \quad \mathcal{L}^{[1]}(t;\theta) = -\mathrm{i}\,\mathrm{ad}_{\underline{\boldsymbol{e}}(t;\theta)} \cdot \underline{\boldsymbol{L}}, \quad \mathcal{L}^{[2]} = -\mathrm{i}\,\mathrm{ad}_{\mathrm{H}_{J}} + \mathcal{R}$$

Simplification: e(t) piecewise constant, so that in *n*th piece,

$$\mathcal{L}(t; \theta) = \mathcal{L}_n(\theta) = \mathcal{L}_n^{[1]}(\theta) + \mathcal{L}^{[2]}, \qquad \mathcal{L}_n^{[1]}(\theta) = -\mathrm{i} \operatorname{ad}_{\underline{e}_n(\theta)} \cdot \underline{L}$$

Compute *n*th propagator using splittings,

$$\mathbf{U}_{n} = \mathbf{e}^{h\mathcal{L}_{n}(\boldsymbol{\theta})} \approx \prod_{k=1}^{K} \mathbf{e}^{ha_{k}\mathcal{L}_{n}^{[1]}(\boldsymbol{\theta})} \mathbf{e}^{hb_{k}\mathcal{L}^{[2]}}$$

Liouville-von Neumann equation

$$\partial_t \rho = \mathcal{L}(t; \theta) \rho$$

In general,

$$\mathcal{L}(t;\theta) = \mathcal{L}^{[1]}(t;\theta) + \mathcal{L}^{[2]}, \quad \mathcal{L}^{[1]}(t;\theta) = -\mathrm{i}\,\mathrm{ad}_{\underline{\boldsymbol{e}}(t;\theta)} \cdot \underline{\boldsymbol{L}}, \quad \mathcal{L}^{[2]} = -\mathrm{i}\,\mathrm{ad}_{\mathrm{H}_J} + \mathcal{R}$$

Simplification: e(t) piecewise constant, so that in *n*th piece,

$$\mathcal{L}(t; \theta) = \mathcal{L}_n(\theta) = \mathcal{L}_n^{[1]}(\theta) + \mathcal{L}^{[2]}, \qquad \mathcal{L}_n^{[1]}(\theta) = -\mathrm{i} \operatorname{ad}_{\underline{e}_n(\theta)} \cdot \underline{L}$$

Compute *n*th propagator using splittings,

$$\mathbf{U}_{n} = \mathbf{e}^{h\mathcal{L}_{n}(\boldsymbol{\theta})} \approx \prod_{k=1}^{K} \mathbf{e}^{ha_{k}\mathcal{L}_{n}^{[1]}(\boldsymbol{\theta})} \mathbf{e}^{hb_{k}\mathcal{L}^{[2]}}$$

• $\mathcal{L}^{[2]}$ does not change. Compute exponentials once and reuse.

Liouville-von Neumann equation

$$\partial_t \rho = \mathcal{L}(t; \theta) \rho$$

In general,

$$\mathcal{L}(t;\theta) = \mathcal{L}^{[1]}(t;\theta) + \mathcal{L}^{[2]}, \quad \mathcal{L}^{[1]}(t;\theta) = -\mathrm{i}\,\mathrm{ad}_{\underline{\boldsymbol{e}}(t;\theta)} \cdot \underline{\boldsymbol{L}}, \quad \mathcal{L}^{[2]} = -\mathrm{i}\,\mathrm{ad}_{\mathrm{H}_J} + \mathcal{R}$$

Simplification: e(t) piecewise constant, so that in *n*th piece,

$$\mathcal{L}(t;\boldsymbol{\theta}) = \mathcal{L}_n(\boldsymbol{\theta}) = \mathcal{L}_n^{[1]}(\boldsymbol{\theta}) + \mathcal{L}^{[2]}, \qquad \mathcal{L}_n^{[1]}(\boldsymbol{\theta}) = -\mathrm{i} \operatorname{ad}_{\underline{\boldsymbol{e}}_n(\boldsymbol{\theta})} \cdot \underline{\boldsymbol{L}}$$

Compute *n*th propagator using splittings,

$$\mathbf{U}_{n} = \mathbf{e}^{h\mathcal{L}_{n}(\boldsymbol{\theta})} \approx \prod_{k=1}^{K} \mathbf{e}^{ha_{k}\mathcal{L}_{n}^{[1]}(\boldsymbol{\theta})} \mathbf{e}^{hb_{k}\mathcal{L}^{[2]}}$$

- $\mathcal{L}^{[2]}$ does not change. Compute exponentials once and reuse.
- Derivatives only required for $e^{ha_k \mathcal{L}_n^{[1]}(\theta)}$ terms.
Multiple spins & dissipation

Liouville-von Neumann equation

$$\partial_t \rho = \mathcal{L}(t; \theta) \rho$$

In general,

$$\mathcal{L}(t;\theta) = \mathcal{L}^{[1]}(t;\theta) + \mathcal{L}^{[2]}, \quad \mathcal{L}^{[1]}(t;\theta) = -\mathrm{i}\,\mathrm{ad}_{\underline{\boldsymbol{e}}(t;\theta)} \cdot \underline{\boldsymbol{L}}, \quad \mathcal{L}^{[2]} = -\mathrm{i}\,\mathrm{ad}_{\mathrm{H}_{J}} + \mathcal{R}$$

Simplification: e(t) piecewise constant, so that in *n*th piece,

$$\mathcal{L}(t;\boldsymbol{\theta}) = \mathcal{L}_n(\boldsymbol{\theta}) = \mathcal{L}_n^{[1]}(\boldsymbol{\theta}) + \mathcal{L}^{[2]}, \qquad \mathcal{L}_n^{[1]}(\boldsymbol{\theta}) = -\mathrm{i} \operatorname{ad}_{\underline{\boldsymbol{e}}_n(\boldsymbol{\theta})} \cdot \underline{\boldsymbol{L}}$$

Compute *n*th propagator using splittings,

$$\mathbf{U}_{n} = \mathbf{e}^{h\mathcal{L}_{n}(\boldsymbol{\theta})} \approx \prod_{k=1}^{K} \mathbf{e}^{ha_{k}\mathcal{L}_{n}^{[1]}(\boldsymbol{\theta})} \mathbf{e}^{hb_{k}\mathcal{L}^{[2]}}$$

- $\mathcal{L}^{[2]}$ does not change. Compute exponentials once and reuse.
- Derivatives only required for $e^{ha_k \mathcal{L}_n^{[1]}(\theta)}$ terms.
- $\mathcal{L}^{[1]}$: single spin terms and ESCALADE derivatives can be reused.

Multiple spins & dissipation

Liouville-von Neumann equation

$$\partial_t \rho = \mathcal{L}(t; \theta) \rho$$

In general,

$$\mathcal{L}(t;\theta) = \mathcal{L}^{[1]}(t;\theta) + \mathcal{L}^{[2]}, \quad \mathcal{L}^{[1]}(t;\theta) = -\mathrm{i}\,\mathrm{ad}_{\underline{\boldsymbol{e}}(t;\theta)} \cdot \underline{\boldsymbol{L}}, \quad \mathcal{L}^{[2]} = -\mathrm{i}\,\mathrm{ad}_{\mathrm{H}_J} + \mathcal{R}$$

Simplification: e(t) piecewise constant, so that in *n*th piece,

$$\mathcal{L}(t;\boldsymbol{\theta}) = \mathcal{L}_n(\boldsymbol{\theta}) = \mathcal{L}_n^{[1]}(\boldsymbol{\theta}) + \mathcal{L}^{[2]}, \qquad \mathcal{L}_n^{[1]}(\boldsymbol{\theta}) = -\mathrm{i} \operatorname{ad}_{\underline{\boldsymbol{e}}_n(\boldsymbol{\theta})} \cdot \underline{\boldsymbol{L}}$$

Compute nth propagator using splittings,

$$\mathbf{U}_{n} = \mathbf{e}^{h\mathcal{L}_{n}(\boldsymbol{\theta})} \approx \prod_{k=1}^{K} \mathbf{e}^{ha_{k}\mathcal{L}_{n}^{[1]}(\boldsymbol{\theta})} \mathbf{e}^{hb_{k}\mathcal{L}^{[2]}}$$

- $\mathcal{L}^{[2]}$ does not change. Compute exponentials once and reuse.
- Derivatives only required for $e^{ha_k \mathcal{L}_n^{[1]}(\theta)}$ terms.
- $\mathcal{L}^{[1]}$: single spin terms and ESCALADE derivatives can be reused.

GFS 22. Science Advances.

- The matrix exponential
- The Magnus expansion
- Specialised splittings for Schrödinger equation under laser potential
- Spin dynamics and control
 - Dynamics
 - Computation of gradients
 - Optimization strategies

Optimal control for spin systems

Let solution of

$$\partial_t \rho = \mathcal{L}(t; \theta) \rho$$

at time t be given by $\rho(t) = \mathbf{U}(t; \theta)\rho_0$.

Fidelity functions

$$\mathcal{F}(\theta) = f(\mathbf{U}(T;\theta))$$

e.g.

$$\begin{split} f(X) &= \Re \left[\operatorname{Tr} \left(\varrho^{\dagger} X \rho_0 \right) \right] & \text{state-to-state} \\ f(X) &= \Re \left[\operatorname{Tr} \left(\mathbf{U}_{\mathrm{target}}^{\dagger} X \right) \right] & \text{gate design} \end{split}$$

Aim: Maximize fidelity:

$$heta^* = \operatorname*{argmax}_{ heta} \, \mathcal{F}(heta)$$

Local optimization: need gradients

$$\frac{\partial \mathcal{F}}{\partial \theta} = \mathsf{D}f(\mathsf{U}(T;\theta))\frac{\partial \mathsf{U}(T;\theta)}{\partial \theta},$$

and Hessians.

Numerical solvers $\mathcal{S}_{(1)}, \mathcal{S}_{(2)}, \dots, \mathcal{S}_{(L)}$ with increasing costs and accuracies.

$$\mathbf{U}(T;\theta) \approx \mathcal{S}_{(\ell)} := \mathcal{S}_{(\ell),N} \, \mathcal{S}_{(\ell),N-1} \, \cdots \, \mathcal{S}_{(\ell),2} \, \mathcal{S}_{(\ell),1}, \qquad \text{with} \quad \mathcal{S}_{(\ell),n} \approx \mathrm{U}_n,$$

Numerical solvers $\mathcal{S}_{(1)}, \mathcal{S}_{(2)}, \dots, \mathcal{S}_{(L)}$ with increasing costs and accuracies.

$$\begin{split} \mathsf{U}(\mathsf{T};\theta) &\approx \mathcal{S}_{(\ell)} := \mathcal{S}_{(\ell),N} \, \mathcal{S}_{(\ell),N-1} \, \cdots \, \mathcal{S}_{(\ell),2} \, \mathcal{S}_{(\ell),1}, \qquad \text{with} \quad \mathcal{S}_{(\ell),n} \approx \mathrm{U}_n, \\ \mathcal{F}_{(\ell)}(\theta) &:= f(\mathcal{S}_{(\ell)}(\theta)) \quad \approx \quad f(\mathsf{U}(\mathsf{T};\theta)) = \mathcal{F}(\theta). \end{split}$$

Numerical solvers $\mathcal{S}_{(1)}, \mathcal{S}_{(2)}, \dots, \mathcal{S}_{(L)}$ with increasing costs and accuracies.

$$\mathbf{U}(\mathcal{T};\theta) \approx \mathcal{S}_{(\ell)} := \mathcal{S}_{(\ell),N} \, \mathcal{S}_{(\ell),N-1} \, \cdots \, \mathcal{S}_{(\ell),2} \, \mathcal{S}_{(\ell),1}, \qquad \text{with} \quad \mathcal{S}_{(\ell),n} \approx \mathbf{U}_n,$$

$$\mathcal{F}_{(\ell)}(\theta) := f(\mathcal{S}_{(\ell)}(\theta)) \approx f(\mathbf{U}(T;\theta)) = \mathcal{F}(\theta).$$

Method for computing gradients of these solvers with respect to θ .

$$\frac{\partial \mathcal{F}_{(\ell)}(\theta)}{\partial \theta_n} = \mathsf{D}f(\mathcal{S}_{(\ell)}(\theta))\frac{\partial \mathcal{S}_{(\ell)}(\theta)}{\partial \theta_n},$$

Numerical solvers $S_{(1)}, S_{(2)}, \ldots, S_{(L)}$ with increasing costs and accuracies.

$$\mathbf{U}(T;\theta) \approx \mathcal{S}_{(\ell)} := \mathcal{S}_{(\ell),N} \, \mathcal{S}_{(\ell),N-1} \, \cdots \, \mathcal{S}_{(\ell),2} \, \mathcal{S}_{(\ell),1}, \qquad \text{with} \quad \mathcal{S}_{(\ell),n} \approx \mathbf{U}_n,$$

$$\mathcal{F}_{(\ell)}(\theta) := f(\mathcal{S}_{(\ell)}(\theta)) \approx f(\mathbf{U}(T;\theta)) = \mathcal{F}(\theta).$$

Method for computing gradients of these solvers with respect to θ .

$$\frac{\partial \mathcal{F}_{(\ell)}(\theta)}{\partial \theta_n} = \mathsf{D}f(\mathcal{S}_{(\ell)}(\theta))\frac{\partial \mathcal{S}_{(\ell)}(\theta)}{\partial \theta_n},$$

Adaptively moving to higher accuracy solver as we approach optima.

Numerical solvers $S_{(1)}, S_{(2)}, \ldots, S_{(L)}$ with increasing costs and accuracies.

$$\mathbf{U}(\mathcal{T};\theta) \approx \mathcal{S}_{(\ell)} := \mathcal{S}_{(\ell),N} \, \mathcal{S}_{(\ell),N-1} \, \cdots \, \mathcal{S}_{(\ell),2} \, \mathcal{S}_{(\ell),1}, \qquad \text{with} \quad \mathcal{S}_{(\ell),n} \approx \mathrm{U}_n,$$

$$\mathcal{F}_{(\ell)}(\theta) := f(\mathcal{S}_{(\ell)}(\theta)) \approx f(\mathbf{U}(T;\theta)) = \mathcal{F}(\theta).$$

Method for computing gradients of these solvers with respect to θ .

$$\frac{\partial \mathcal{F}_{(\ell)}(\theta)}{\partial \theta_n} = \mathsf{D}f(\mathcal{S}_{(\ell)}(\theta))\frac{\partial \mathcal{S}_{(\ell)}(\theta)}{\partial \theta_n},$$

Adaptively moving to higher accuracy solver as we approach optima.

Assume $\mathcal{F}(\theta^*) = 1$.

Numerical solvers $S_{(1)}, S_{(2)}, \ldots, S_{(L)}$ with increasing costs and accuracies.

$$\mathbf{U}(T;\theta) \approx \mathcal{S}_{(\ell)} := \mathcal{S}_{(\ell),N} \, \mathcal{S}_{(\ell),N-1} \, \cdots \, \mathcal{S}_{(\ell),2} \, \mathcal{S}_{(\ell),1}, \qquad \text{with} \quad \mathcal{S}_{(\ell),n} \approx \mathbf{U}_n,$$

$$\mathcal{F}_{(\ell)}(\theta) := f(\mathcal{S}_{(\ell)}(\theta)) \approx f(\mathbf{U}(T;\theta)) = \mathcal{F}(\theta).$$

Method for computing gradients of these solvers with respect to θ .

$$\frac{\partial \mathcal{F}_{(\ell)}(\theta)}{\partial \theta_n} = \mathsf{D}f(\mathcal{S}_{(\ell)}(\theta))\frac{\partial \mathcal{S}_{(\ell)}(\theta)}{\partial \theta_n},$$

Adaptively moving to higher accuracy solver as we approach optima.

Assume $\mathcal{F}(\theta^*) = 1$. Let $\operatorname{tol}_{\mathcal{F}}$ be terminating threshold for \mathcal{F} ,

$$|1 - \mathcal{F}| \leq |1 - \mathcal{F}_{(\ell)}| + |\mathcal{F}_{(\ell)} - \mathcal{F}| \leq (1 + \kappa_{\mathcal{F}})|1 - \mathcal{F}_{(\ell)}| \leq \operatorname{tol}_{\mathcal{F}},$$

Move from $S_{(\ell)}$ to $S_{(\ell+1)}$ when the following is violated:

$$|\mathcal{F}_{(\ell)}-\mathcal{F}| \quad \leq \quad \kappa_{\mathcal{F}}|1-\mathcal{F}_{(\ell)}|.$$

Numerical solvers $S_{(1)}, S_{(2)}, \ldots, S_{(L)}$ with increasing costs and accuracies.

$$\mathbf{U}(T;\theta) \approx \mathcal{S}_{(\ell)} := \mathcal{S}_{(\ell),N} \, \mathcal{S}_{(\ell),N-1} \, \cdots \, \mathcal{S}_{(\ell),2} \, \mathcal{S}_{(\ell),1}, \qquad \text{with} \quad \mathcal{S}_{(\ell),n} \approx \mathbf{U}_n,$$

$$\mathcal{F}_{(\ell)}(\theta) := f(\mathcal{S}_{(\ell)}(\theta)) \quad \approx \quad f(\mathbf{U}(T;\theta)) = \mathcal{F}(\theta).$$

Method for computing gradients of these solvers with respect to θ .

$$\frac{\partial \mathcal{F}_{(\ell)}(\theta)}{\partial \theta_n} = \mathsf{D}f(\mathcal{S}_{(\ell)}(\theta))\frac{\partial \mathcal{S}_{(\ell)}(\theta)}{\partial \theta_n},$$

Adaptively moving to higher accuracy solver as we approach optima.

Assume $\mathcal{F}(\theta^*) = 1$. Let $\operatorname{tol}_{\mathcal{F}}$ be terminating threshold for \mathcal{F} ,

$$|1-\mathcal{F}| \leq |1-\mathcal{F}_{(\ell)}| + |\mathcal{F}_{(\ell)}-\mathcal{F}| \leq (1+\kappa_{\mathcal{F}})|1-\mathcal{F}_{(\ell)}| \leq \operatorname{tol}_{\mathcal{F}},$$

Move from $S_{(\ell)}$ to $S_{(\ell+1)}$ when the following is violated:

$$|\mathcal{F}_{(\ell)} - \mathcal{F}| \leq \kappa_{\mathcal{F}} |1 - \mathcal{F}_{(\ell)}|.$$

This system of inequalities enforces the termination criteria

$$|1 - \mathcal{F}_{(\ell)}| \leq rac{\operatorname{tol}_{\mathcal{F}}}{1 + \kappa_{\mathcal{F}}}.$$

Numerical solvers $S_{(1)}, S_{(2)}, \ldots, S_{(L)}$ with increasing costs and accuracies.

$$\mathbf{U}(T;\theta) \approx \mathcal{S}_{(\ell)} := \mathcal{S}_{(\ell),N} \, \mathcal{S}_{(\ell),N-1} \, \cdots \, \mathcal{S}_{(\ell),2} \, \mathcal{S}_{(\ell),1}, \qquad \text{with} \quad \mathcal{S}_{(\ell),n} \approx \mathbf{U}_n,$$

$$\mathcal{F}_{(\ell)}(\theta) := f(\mathcal{S}_{(\ell)}(\theta)) \quad \approx \quad f(\mathbf{U}(T;\theta)) = \mathcal{F}(\theta).$$

Method for computing gradients of these solvers with respect to θ .

$$\frac{\partial \mathcal{F}_{(\ell)}(\theta)}{\partial \theta_n} = \mathsf{D}f(\mathcal{S}_{(\ell)}(\theta))\frac{\partial \mathcal{S}_{(\ell)}(\theta)}{\partial \theta_n},$$

Adaptively moving to higher accuracy solver as we approach optima.

Assume $\mathcal{F}(\theta^*) = 1$. Let $\operatorname{tol}_{\mathcal{F}}$ be terminating threshold for \mathcal{F} ,

$$|1-\mathcal{F}| \leq |1-\mathcal{F}_{(\ell)}| + |\mathcal{F}_{(\ell)}-\mathcal{F}| \leq (1+\kappa_{\mathcal{F}})|1-\mathcal{F}_{(\ell)}| \leq \operatorname{tol}_{\mathcal{F}},$$

Move from $S_{(\ell)}$ to $S_{(\ell+1)}$ when the following is violated:

$$|\mathcal{F}_{(\ell)}-\mathcal{F}_{(\ell+1)}| \quad \leq \quad \kappa_{\mathcal{F}}|1-\mathcal{F}_{(\ell)}|.$$

This system of inequalities enforces the termination criteria

$$|1 - \mathcal{F}_{(\ell)}| \leq rac{\operatorname{tol}_{\mathcal{F}}}{1 + \kappa_{\mathcal{F}}}.$$

Numerical results

State-to-state transfer (left two) and swap gate (right two)

GFS 22. Science Advances. QOALA github.com/superego101/qoala

Optimal Control

- Do not need the most accurate method far from optima
- Compute gradients of the solver (discretise then optimise)
- Can compute exact gradients and Hessians efficiently using Lie algebraic techniques

Quantum Dynamics

- Need methods with different accuracies and costs
- Would like to conserve physical properties
- Magnus expansion for time-dependent controls
- Lanczos applies generally but struggles in many applications
- $\bullet~$ Magnus +~ Splittings specialised for individual systems much more efficient
- Can take steps larger than wavelength of oscillatory driving pulse

Based on joint works with

• Quantum dynamics

Rational approximations. PDE or ODE.

Tobias Jawecki (TU Vienna). JS 23. Under review; JS 23. In preparation.

• Magnus expansion-based methods. PDE. Schrödinger .

Philipp Bader (Jaume I), Arieh Iserles (Cambridge), Karolina Kropielnicka (Gdansk + IMPAN).

- Magnus-Lanczos. electrons. IKS 18. SIAM J. Num. Anal.
- Magnus-Zassenhaus splittings. nuclei. BIKS 16. Proc. Roy. Soc. A.; IKS 19. J. Comp. Phys.
- Magnus-Compact splittings. electrons. IKS 19. Comput. Phys. Commun.; S 19. J. Chem. Phys.
- Commutator-free. ODE. Hubbard. W. Auzinger, J. Dubois, K. Held, H. Hofstätter, T. Jawecki, A. Kauch, O. Koch, K. Kropielnicka, P. S., C. Watzenbäck 22. J. Comput. Math. Dat. Sci.
- Quantum circuits. ODE. LvN. Spins.

Chris Budd (Bath), Guannan Chen (Bath), Mohammadali Foroozandeh (Oxford \rightarrow Zurich Instruments). BCFS 23. In preparation.

Optimal control. ODE. LvN. Spins.

David Goodwin (Oxford), Mohammadali Foroozandeh (Oxford \rightarrow Zurich Instruments), Ali Sherzod (Oxford).

- Computation of gradients. FS 22. Automatica. GFS 22. Science Advances.
- Optimization strategies. GFS 22. Science Advances.; FSS 23. In preparation.

Packages: MagPy 'pip install magpy'; git: github.com/brownadder/magpy;

ESCALADE doi:10.17632/8zz84359m5; QOALA github.com/superego101/qoala