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What is Hamiltonian simulation? QC

Solution of the Schrödinger equation,

i∂tψ = H(t)ψ, H(t)∗ = H(t), ψ(t) ∈H .

Feynman, R. P. Simulating physics with computers. Int J Theor Phys 21, 467-488 (1982).

n-body problems

• PDE, ψ ∈ CN3n

after spatial discretisation with N points in each direction,

• ODE, ψ ∈ C2n for 2-level systems (e.g. spin systems).
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Why quantum algorithms for Hamiltonian simulation? QC

Hamiltonian simulation

i∂tψ = H(t)ψ

simple

circuits

unique H(t)

quantum circuits

U1

U2

U3

• Linear growth in number of qubits vs exponential in classical computing

• Simple circuits with Trotterisation (no auxiliary qubits)

• Subroutine in quantum algorithms – QPE (Kitaev 95), HHL (Harrow, Hassidim, Lloyd 09)

• Every gates has underlying Hamiltonian ⇒ every quantum circuit is HS
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Example: spin systems QC

• A uniquely quantum phenomenon that has no classical counterpart.

• A type of intrinsic angular momentum - the particle is not rotating.

• Makes a quantum particle behave like a tiny magnet with a North pole

and a South pole.

ρ = 1
2 (I + s · σ) ∈ C2×2

,

s ∈ R3
,

and σ = (X ,Y , Z)

are 2× 2 Pauli matrices.

• Responsible for ferromagnetism.

• The phenomenon that powers

• magnetic resonance imaging (MRI)

• spintronics

• quantum computing

• Suspected to be involved in detection of Earth’s magnetic field by birds

(quantum biology).
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Quantum computing comes home QC

For n interacting spins, state space is exponentially large, ρ ∈ C2n×2n .

However, requires linear growth in qubits.

Resurgence of interest in quantum algorithms for Hamiltonian simulation.

Berry et al. 15, Low & Chuang 17, 19, Low & Wiebe 18, Smith et al. 19, Kieferova et al. 19,

Berry et al. 20, Chen et al. 21, Haah et al. 21, Jin & Li 21, Jin et al. 21, Dong et al. 21,22, An et

al. 22, Watkins et al. 22, Mizuta et al. 23,...

Hamiltonian simulation of two-level systems is among early candidates for

demonstrating quantum advantage. (Childs et al. 18, Seetharam et al. 21).

Recent claim by IBM (using their Eagle processor, 14 June 2023):

• Kim, Eddins, Anand, Wei, van den Berg, Rosenblatt, Nayfeh, Wu, Zaletel, Temme &

Kandala (2023), ‘Evidence for the utility of quantum computing before fault tolerance’,

Nature 618, 500–505.

Used Trotter splitting for an Ising chain.
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The Hamiltonian QC

H(t) = e(t)>S︸ ︷︷ ︸
Hss(t)

+
1

2
S>C S︸ ︷︷ ︸
Hin

=
n∑

k=1

∑
α∈{X ,Y ,Z}

eαk (t)αk +
1

2

n∑
j,k=1

∑
α,β∈{X ,Y ,Z}

Cα,βj,k αj βk

where αk acts on kth spin only,

αk = I ⊗ · · · ⊗ I︸ ︷︷ ︸
n−k times

⊗ α︸︷︷︸
kth

⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
k−1 times

∈ C2n×2n ,

and α = X ,Y ,Z are Pauli matrices,

X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
.

Two-level systems: Ising chains, Kitaev models, NMR/ESR, qubits (spin, superconducting, ...)
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Time-independent Hamiltonian – classical Trotterisation algorithms QC

∂tu = A u, u(0) = u0,

exact solution given by matrix exponential

u(t) = exp(tA)u0 =
∞∑
k=0

(tA)k

k!
u0.

Hamiltonian simulation:

A = −ih ( e>S +
1

2
S>C S ) (1)

For non-interacting spins, since su(2) is spanned by iX , iY , iZ and

[X ,Y ] = iZ , [Y ,Z ] = iX , [Z ,X ] = iY ,

can compute exponential analytically

etA =
n⊗

k=1

e−itek ·σ =
n⊗

k=1

 cos
(

t‖ek‖
2

)
− iezk

sin

( ‖ek‖
2

)
‖tek‖

(−iexk − eyk )
sin

(
t‖ek‖

2

)
‖ek‖

(−iexk + eyk )
sin

(
t‖ek‖

2

)
‖ek‖

cos
(

t‖ek‖
2

)
+ iezk

sin

(
t‖ek‖

2

)
‖ek‖

 ,

Trotterisation: For −iH = A + B we need to split

exp(h(A + B)) = ehAehB +O
(
h2
)
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Time-independent Hamiltonian – quantum Trotterisation algorithms QC

Trotterisation:

e−ih(HX +HY +HZ ) = e−ihHX

e−ihHY

e−ihHZ

+O
(
h2
)
,

where

Hα = e>Sα +
1

2
Sα>Cα,α Sα, α ∈ {X ,Y ,Z},

and

e−ihHα =
n∏
`=1

e−iheα` α`

n∏
j=1

n∏
k=j+1

e
−ihC

α,α
j,k

αjαk ,

computed exactly using n single-qubit gates and O
(
n2
)

coupling gates.

(a)

(b)

(c)
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Trotterisation ↔ Splitting methods for matrix exponential QC

If ehA and ehB are easier to compute, approximate eh(A+B) by

splitting error name stages

ehAehB O
(
h2
)

Trotter 2

e
1
2
hBehAe

1
2
hB O

(
h3
)

Strang 3

ea1hBeb1hAea2hB . . . ebnhA . . . ea2hBeb1hAea1hB O
(
h2p+1

)
Classical O(2p)

e
h
6
Ae

h
2
Be

2
3

(hA+ h3

48
[[A,B],B])e

h
2
Be

h
6
A O

(
h2p+1

)
Compact O(2p)

e
h
2
Be

h
2
Aeh

3Reh
5Seh

3Re
h
2
Ae

h
2
B O

(
h2p+1

)
Asymptotic O(p)

Yoshida 1990, Murua & Sanz-Serna 1999, Chin & Chen 2002, McLachlan & Quispel 2002, Blanes, Casas & Murua 2008, Chartier &

Murua 2009, . . . Asymptotic (Zassenhaus) Bader, Iserles, Kropielnicka, & S. 2014, Found. Comp. Math.
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High order splittings QC

101 102 103 104

100

10−1

10−4

10−7

circuit depth

er
ro

r
at

T
=

1
0

m
s

Trotter

Strang

Yoshida

O(h)

O(h2)

O(h4)

No good reason to use Trotter instead of Strang, even for NISQ

Chen, Foroozandeh, Budd & S. 2023. Quantum simulation of highly-oscillatory many-body

Hamiltonians for near-term devices, submitted
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Quantum advantage in NISQ era? QC

‘Evidence for the utility of quantum computing before fault tolerance’

IBM paper appeared on 14 June 2023.

Classical algorithms appeared on 26 and 28 June 2023.

• Tindall, Fishman, Stoudenmire & Sels, ‘Efficient tensor network simulation of IBMs kicked

Ising experiment’

• Begus̆ić & Chan, ‘Fast classical simulation of evidence for the utility of quantum computing

before fault tolerance’. Computed on a single core of a laptop!
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What should we expect from quantum Hamiltonian simulation? QC

BQP (bounded-error quantum polynomial time)

Class of decision problems solvable by a quantum computer in polynomial time,

with an error probability of at most 1/3 for all instances.

P ⊆ BQP ⊆ PSPACE

P
?
= BQP

?
= PSPACE is not known.

The only ‘definitive’ proof of quantum ‘supremacy’ (in Hamiltonian simulation

or otherwise) is to show BQP 6= P.

NP problems

P problems

NP complete

PSPACE problems

BQP
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Computing the matrix exponential AT

C. Moler & C. V. Loan, Nineteen Dubious Ways to Compute the Exponential of a Matrix,

Twenty-Five Years Later, SIAM Review (2003).

Splitting, Diagonalisation, Scaling and Squaring

Asymptotic Approximate ez on spectrum Iterative

z → 0 z ∈ [a, b] ⊆ σ(A) Use A and u0

Taylor Chebyshev

Polynomial
∑n

k=0
zk

k! J0(i) + 2
∑n

k=1 i
kJk (−i)Tk (z) Lanczos

Padé

Rational
1+ 1

2
z+ 1

12
z2

1− 1
2
z+ 1

12
z2 ? Rational Krylov

Qubitization (Low & Chuang 2019) based on Chebyshev.

Unitarity: |exp(ix)|= 1, exp maps imaginary axis to unit circle.

Since σ(iH) ⊆ iR,

|f (ix)|= 1 x ∈ R =⇒ f (iH) is unitary

No non-constant polynomial method can be unitary. Proof: coercivity.

13
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Rational
1+ 1

2
z+ 1

12
z2

1− 1
2
z+ 1

12
z2 ? Rational Krylov

Qubitization (Low & Chuang 2019) based on Chebyshev.

Unitarity: |exp(ix)|= 1, exp maps imaginary axis to unit circle.

Since σ(iH) ⊆ iR,

|f (ix)|= 1 x ∈ R =⇒ f (iH) is unitary

No non-constant polynomial method can be unitary. Proof: coercivity.

13

https://doi.org/10.1137/S00361445024180
https://doi.org/10.1137/S00361445024180


Computing the matrix exponential AT

C. Moler & C. V. Loan, Nineteen Dubious Ways to Compute the Exponential of a Matrix,

Twenty-Five Years Later, SIAM Review (2003).

Splitting, Diagonalisation, Scaling and Squaring

Asymptotic Approximate ez on spectrum Iterative

z → 0 z ∈ [a, b] ⊆ σ(A) Use A and u0

Taylor Chebyshev

Polynomial
∑n

k=0
zk

k! J0(i) + 2
∑n

k=1 i
kJk (−i)Tk (z) Lanczos

Padé
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Why care about unitarity? AT

Schrödinger equation

∂tu = −iHu, u(0) = u0, H
∗ = H,

u(t) = e−itHu0

E(t) := 〈u(t),Hu(t)〉 = 〈u(0),Hu(0)〉 = E(0) energy conservation

〈u(t), v(t)〉 = 〈u(0), v(0)〉︸ ︷︷ ︸
unitary evolution

=⇒ ‖u(t)‖2 = ‖u(0)‖2 = 1︸ ︷︷ ︸
mass or probability conservation

exp maps Lie algebra iH ∈ su(n) to Lie group e−itH ∈ U(n).

These properties are also desired from numerical approximations.

ez ≈ 1 + z u1 = (I − ihH)u0 F.E. ‖un‖2→∞

ez ≈ 1
1−z (I + ihH)u1 = u0 B.E. ‖un‖2→ 0

ez ≈ 1+z/2
1−z/2 (I + i(h/2)H) u1 = (I − i(h/2)H) u0 T.R. ‖un‖2= ‖u0‖2

cay(z) = 1+z/2
1−z/2

maps Lie algebra iH ∈ su(n) to Lie group e−itH ∈ U(n).

Wave, KdV, NLS, Pauli, Dirac, Liouville–von Neumann, Linblad, MCTDHF, CCSD, TDDFT, . . .
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Uniform approximation with AAA & AAA–Lawson AT

• AAA. Nakatsukasa, Sète & Trefethen. The AAA algorithm for rational approximation, SIAM

J. Sci. Comput., Vol. 40, Iss. 3 (2018).

• AAA–Lawson. Nakatsukasa & Trefethen. An algorithm for real and complex rational

minimax approximation, SIAM J. Sci. Comput., Vol. 4, Iss. 5 (2020).

Error in approximation of eix

(Padé vs AAA–Lawson)

-15 -10 -5 0 5 10 15

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

∣ ∣ ∣r(ix
)
−

e
ix
∣ ∣ ∣

x

AAA and AAA–Lawson methods are adaptive al-

gorithms that can produce rational approximants

with uniform accuracy over a specified interval or

test nodes xk .

r(x) =
m∑
j=1

eiyj wj

x − yj︸ ︷︷ ︸
n(x)

/ m∑
j=1

wj

x − yj︸ ︷︷ ︸
d(x)

≈ e
ix
,

linearize and minimize

‖Lw‖2=
( n∑

k=1

µk |n(xk )− e
ixk d(xk )|2

)1/2

Computed using SVD of Loewner matrix, Lkj = µ
1/2
k

eixk−e
iyj

xk−yj
, and picking w as the right singular

vector corresponding to the smallest singular value.

15
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• AAA. Nakatsukasa, Sète & Trefethen. The AAA algorithm for rational approximation, SIAM

J. Sci. Comput., Vol. 40, Iss. 3 (2018).

• AAA–Lawson. Nakatsukasa & Trefethen. An algorithm for real and complex rational

minimax approximation, SIAM J. Sci. Comput., Vol. 4, Iss. 5 (2020).
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ix
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Unitarity of AAA & AAA–Lawson AT

Loewner matrix based rational approximations and interpolations are unitary.

Jawecki & S 2023. Unitarity of some barycentric rational approximants, IMA J. Num. Anal.

Includes Antoulas & Anderson 1986, Mayo & Antoulas 2007, NST 2018 (AAA), NT 2020 (AAA–Lawson), JS

(submitted) (interpolation at Chebyshev nodes, modified BRASIL algorithm, modified AAA–Lawson), ...
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Modified AAA and AAA–Lawson (JS 23) ensures unitarity to machine precision.
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Non-uniform and split spectrum approximation AT

Wavefunction centred around two different energy levels

u0(x) = ψ1(x) + ψ2(x), ψj (x) =
n∑

k=0

cj,kvk (x), cj,k = e
−(µj−λk )2/2σ2

j
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Best approximation AT

Approximating f ∈ C([a, b];R) in Pn[a, b]

• Best approximant p∗ ∈ Pn exists & unique

‖f − p∗‖∞= inf{‖f − p‖∞ : p ∈ Pn},

• Chebyshev equioscillation theorem

f (xj)− p∗(xj) = (−1)j+ι‖f − p‖∞, ι ∈ {0, 1}
• Remez minimax algorithm

• Find points {xj} of local maximum error |f (x)− p[k](x)|.
• Stop if equioscillation property satisfied.

• Otherwise, solve for f (xj )− p[k+1](xj ) = (−1)jE

Motivates AAA–Lawson minimax algorithm [NT20] for approximating

f ∈ C(I ⊆ C;C) in Rn[I ] =
{

p
q

: p, q ∈ Pn

}
(or in Barycentric forms).

• Gives good approximants in practice (typically), but ...

• No best approximation results for complex-valued rational approximation,

• {p ∈ Pn : ‖p‖∞= 1} is compact, {r ∈ Rn : ‖r‖∞= 1} is not compact,

• No equioscillation property in C.
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Equioscillation AT

Figures from [NT20]

(left) f (z) = ez on {z ∈ C : |z|= 1}
(right) f (z) = Ai(z) on z ∈ [−10, 10]

deviation f (z)− r(z) & max error ‖f − r‖
No equioscillation!
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Rat282. Rational approximation of exp(ikx)

Nick Trefethen, Glasgow, 28 June 2023

Pranav Singh gave a talk yesterday about rational approximation of ekz on a compact subset of
the imaginary axis, or equivalently, eikx on a real interval. It’s a nice problem not least because
you need AAA-Lawson rather than minimax, since the function is complex.

Let’s fix k = 5 and work on the interval [−1, 1]. Rather than Chebfun aaa, based on a discrete
set, I’ll use the new aaax, with automatic sampling of the continuous interval. (See the new paper
with Driscoll and Nakatsukasa posted at my web site.) Here are the error curves you get with
degrees n = 2, 4, 6, 8. The slight tails at the end in the 3rd and 4th images should presumably
be a little smaller; I plot a red boundary circle around the data omitting those tails.

f = @(x) exp(5i*x); xx = chebpts(1000); nlawson = 20; tol = 1e-13; plt = 0; tic

for n = 2:2:8

[r,pol,res,zer] = aaax(f,n,nlawson,tol,plt); ee = f(xx) - r(xx);

subplot(2,2,n/2), plot(ee), axis equal, hold on

err = norm(ee(100:900),inf); plot(err*exp(2i*pi*(0:200)/200),'r'), hold off

title(['n = ' int2str(n)])

end
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These approximations have modulus almost exactly 1 over the approximation interval, as we can
see below. The right image similarly shows poles and zeros, nearly exact reflections across the
axis. Singh has a clever method for making the unimodularity exact. Whether that can be done
ex post facto from these numerically computed approximations, I don’t know.

clf, subplot(221), plot(xx,abs(r(xx))-1), title('abs(r(x))-1'), grid on

subplot(222), plot(pol,'.r','markersize',10), hold on

plot(zer,'.b','markersize',10), grid on, hold off, title('poles and zeros')
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Let r(ix) = eig(x), where g(x) is phase

Optimality ⇐⇒ phase equioscillates

g(xj )−ωxj = (−1)j+ι max
x∈[−1,1]

|g(x)−ωx|.

|r(ixj )− eiωxj |= ‖r − exp(ω·)‖

Zeros of phase & approx error coincide.
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Equioscillation AT
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Best (unitary rational) approximation AT

Jawecki & S 2023. Unitary rational best approximations to the exponential function, submitted.

Theorem. For ω ∈ (0, (n + 1)π), there exists a unique unitary best

approximation r ∈ Un, i.e.,

‖r − exp(ω·)‖= inf
u∈Un
‖u − exp(ω·)‖, ‖f ‖ := sup

x∈[−1,1]

|f (ix)|,

whose phase error equioscillates at 2n + 2 points, where max approx error is

achieved. Moreover, r has minimal degree n, and distinct poles.

Superlinear convergence. For ω < 1.47(n + 1/2),

min
u∈Un
‖u − exp(ω·)‖≤ (n! )2ω2n+1

(2n)! (2n + 1)!
.

(proof via Pad́e), and in the limit ω → 0+,

min
u∈Un
‖u − exp(ω·)‖= 2(n! )2

(2n)! (2n + 1)!

(ω
2

)2n+1

+O(ω2n+2), ω → 0+.

(proof via interpolation at Chebyshev points), twice as fast as Padé.

20

https://doi.org/10.48550/arXiv.2312.13809
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Poles, ω → 0+, ω → (n + 1)π− AT
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In the limit ω → 0+, poles converge to poles of Padé.

In the limit ω → (n + 1)π−, poles approach iξj , where ξj = −1 + 2j/(n + 1) for

j = 1, . . . , n, within the right-half complex plane.

A-stability. Poles of best approximants are in right half plane and

|r(z)|< 1, for z ∈ C with Re(z) < 0.

Relevant for non-Hermitian matrices/operators (e.g. open systems).

Time-symmetric.

r(−ix) = r(ix)−1, x ∈ R.
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Interpolation and equioscillation points, ω → 0+, ω → (n + 1)π− AT
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In the limit ω → 0+, interpolation points converge to Chebyshev nodes.

In the limit ω → (n + 1)π−, interpolation points and equioscillation points

converge to uniformly distributed points. Phase error approaches sawtooth

function. 22



Three new algorithms. Interpolation at Chebyshev points, modified AAA–Lawson and BRASIL

algorithms – latter two candidates for best approximation (seem to display equioscillatory

behaviour).
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Figure 1: [new] unitary best approximation (�), error estimate (dashed, +), [new] rational

interpolant at Chebyshev nodes (.), Padé approximation (◦), Padé error bound (dashed, ×),

polynomial Chebyshev approximation (∇), rational Chebyshev approximation (4), .
23



How to compute the matrix exponential? AT

C. Moler & C. V. Loan, Nineteen Dubious Ways to Compute the Exponential of a Matrix,

Twenty-Five Years Later, SIAM Review (2003).

Asymptotic Approximate ez on spectrum Iterative

z → 0 z ∈ [a, b] ⊆ σ(A) Use A and u0

Taylor Chebyshev

Polynomial
∑n

k=0
zk

k!
J0(i) + 2

∑n
k=1 i

kJk(−i)Tk(z) Lanczos

Padé

Rational
1+ 1

2
z+ 1

12
z2

1− 1
2
z+ 1

12
z2 unitary best approximations Rational Krylov

Other techniques: Diagonalisation, Spectral methods, Scaling and Squaring, Splitting

AAA [NST 18], AAA–Lawson [NT 20], their unitary modifications [JS 23], and three new

algorithms [JS submitted].

• Jawecki & S. 2023. Unitarity of some barycentric rational approximants, IMA J. Num. Anal.

• Jawecki & S. 2023. Unitary rational best approximations to the exponential function,

submitted.

• Jawecki & S., in preparation.
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Driven systems – Is Magnus expansion DoA? QC

The solution to u′(t) = A(t)u(t) , A(t) = −iH(t),

u(h) = exp (Θ(h)) u0,

where Θ(h) is the Magnus expansion [Magnus 54],

Θ(h) =

∫ h

0

A(ξ) dξ− 1
2

∫ h

0

∫ ξ

0

[A(ζ),A(ξ)] dζ dξ ←− Fourth order

+ 1
12

∫ h

0

∫ ξ

0

∫ ξ

0

[A(χ), [A(ζ),A(ξ)]] dχ dζ dξ

+ 1
4

∫ h

0

∫ ξ

0

∫ ζ

0

[[A(χ),A(ζ)] ,A(ξ)] dχ dζ dξ + . . .

A(t) = −iH(t), H(t) =
n∑

k=1

∑
α∈{X,Y ,Z}

e
α
k (t)

︸ ︷︷ ︸
O(n) terms

αk +
1

2

n∑
j,k=1

∑
α,β∈{X,Y ,Z}

Cα,βj,k αj βk

︸ ︷︷ ︸
|C|≤O(n2) terms

Issue: A has O(|C |) = O
(
n2
)

terms. Does Θ2 have O
(
|C |2

)
= O

(
n4
)

terms?

A standard method for classical computers, infeasible for quantum computers.

Instead, other approaches used: Dyson series (Kieferova et al. 2019), time-ordered operators (Watkins et al. 2022),

L1 norm scaling (Berry et al. 2020), permutation expansion (Chen et al. 2021), slowly varying Hamiltonians (Haah

et al. 2021), interaction picture (Low & Wiebe 2018), Floquet approach (Mizuta et al. 2023).
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Driven systems – Is Magnus expansion DoA? No! QC

Theorem (Fourth order Magnus based circuit)

ei
2
h
u>S e−ĩr>S−i h

2
S>C S︸ ︷︷ ︸

reuse 4th order Trotterised circuit

e−i 2
h
u>S︸ ︷︷ ︸

two single-gate layers

= eΘ2 +O
(
h5
)

Chen, Foroozandeh, Budd & S. 2023. submitted

For two controls: Ikeda, Abrar, Chuang & Sugiura 2023. Quantum.

101 102 103 104 105 106

10−1

10−4

10−7

circuit depth

H(tn) + Trotter

Magnus order 2 + Strang

Proposed method

CF42, scipy

Autonomized Yoshida 4th

Strang for time-indep

0.005 0.01

·10−2t

In fact, Magnus is much better than all other methods!

Time-dependent problems of practical interest are MUCH harder!
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Driven systems – optimal control OC

Maximize fidelity:

θ∗ = argmax
θ

F(θ)

Fidelity functions

F(θ) = f (U(T ; θ))

where state of system is ρ(t) = U(t; θ)ρ0.

x y

z

x y

z

x y

z

0.0

0.2

0.4

0.6

0.8

1.0

r
=

√
x
2
+

y
2
+

z
2

+140 Hz −160 Hz
1H 13C 19F

A

B
initial state final state

state-to-state gate design

f (X ) = Re
[
Tr
(
%†Xρ0

)]
f (X ) = Re

[
Tr
(
U†targetX

)]

Local optimization: need gradients

∂F
∂θ

= Df (U(T ; θ))
∂U(T ; θ)

∂θ
,

and Hessians.
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Analytic gradients – uncoupled OC

• No dissipation

• Piecewise constant

U(T ; θ) = UNUN−1 · · ·U2U1, with Un = e−isn·σ, sn := he(tn).

We can store intermediate propagators

Ln := UNUN−1 . . .Un, Rn := UnUn−1 . . .U1, O(N)

to compute gradients cheaply and exactly

∂U

∂θn,k
= Ln+1

∂Un

∂θn,k
Rn−1,

∂Un

∂θn,k
= −iUn

([
Dn

∂sn
∂θn,k

]
· σ
)
,

Dn =
∞∑
p=0

(−Sn)p

(p + 1)!
= I + c1Sn + c2S2

n, Sn =

 0 −sn,z sn,y
sn,z 0 −sn,x
−sn,y sn,x 0

 .
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Analytic Hessian – uncoupled OC

The typical approach for computing the Hessian involves computing and storing

Mn,m := UnUn−1 . . .Um+1Um. O
(
N2
)

and use for computing ∂2U
∂θm,j∂θn,k

= Ln+1
∂Un
∂θn,k

Mn−1,m+1
∂Um
∂θm,j

Rm−1.

We exploit

the unitarity of Uk , i.e. U∗kUk = I , to note that

Mn,m = (UN . . .Un+1)∗UN . . .Un+1Mn,mUm−1 . . .U1(Um−1 . . .U1)∗ = L∗nUR∗m,

so that entries of the Hessian can be computed as Ln+1
∂Un
∂θn,k

L∗nUR∗m
∂Um
∂θm,j

Rm−1.
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Coupling, dissipation & adaptive optimal control OC

Liouville–von Neumann equation, piecewise constant,

∂tρ = L(t; θ) ρ, Ln(θ) = −i ade(tn ;θ)>S︸ ︷︷ ︸
L[1]

n (θ)

−i adHin+R︸ ︷︷ ︸
L[2]

Splittings S(1),S(2), . . . ,S(L) ≈ U(T ; θ) with increasing accuracies,

Un = ehLn(θ) ≈
K∏

k=1

ehakL
[1]
n (θ)︸ ︷︷ ︸

uncoupled, analytic grad

ehbkL
[2]

Move from S(`) to S(`+1) when |F(`) −F(`+1)| ≤ κF |1−F(`)|
0 10 20 30 40 50

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 25 50 75 100 125 0 40 80 120 160 200

10−2 10−1 100 101
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

10−1 100 101 102 101 102 103 104

Iteration

1
−
F

A

Iteration

B

Iteration

C

Wall-clock time (s)

1
−
F

D

Wall-clock time (s)

E

Wall-clock time (s)

F

QOALA S2,1 S3,1 S4,1 exact

C

H
+1

40
Hz

C

F

-160Hz

H
+1

40
Hz

C+30ppm

H +150Hz

+7Hz+1
.5

pp
m

C
+50Hz +40ppm

H
+1

50
Hz

+2
pp

m

2-Qubits

3-Qubits

4-Qubits

Fidelity

S
pe

ed
up M-Qubits

99.999%99.99%99.9%99%90%

×5

×10

×15

×20

×25

×30

2 3 4
×5

×10

×15

×20

×25

×30

0 20 40 60 80 100
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 50 100 150 200 250

10−1 100 101 102
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

100 101 102 103 104

Iteration

1
−
F

A

Iteration

B

Wall-clock time (s)

1
−
F

C

Wall-clock time (s)

D

QOALA S2,1 S2,2 S3,1 exact

C

H
+1

40
Hz

C

F

-160Hz

H
+1

40
Hz

99.999%99.99%99.9%99%90%

×5

×10

×15

×20

×25

×30

2-spin-swap

3-spin-swap

Fidelity

S
pe

ed
up

Goodwin, Foroozandeh & S. 2022. Science Advances. QOALA github.com/superego101/qoala

30

https://doi.org/10.1126/sciadv.abq4244
https://github.com/superego101/qoala


Takeaways & Open Problems

• Quantum Computing. [1] Chen, Foroozandeh, Budd & S. 2023. Quantum simulation of

highly-oscillatory many-body Hamiltonians for near-term devices, submitted

• No good reason to use Trotter (used in IBM paper) instead of Strang.

• Practical time-dependent problems are much harder, high order methods required.

• Magnus methods are not DoA, in fact, lead to shortest circuits even for 10−1 accuracy.

• * Better splittings? Better commutator-free methods?

• Approximation Theory. [2] Jawecki & S. 2023. Unitarity of some barycentric rational

approximants, IMA J. Num. Anal. [3] Jawecki & S. 2023. Unitary rational best

approximations to the exponential function, submitted. [4] Jawecki & S., in prep.

• Loewner based algorithms (incl. AAA) conserve unitarity, energy, norm

• Unitary rational best approximations exist, unique & phase equioscillates

• Three new algorithms (Cheb. interp., AAA–Lawson at Cheb., modified BRASIL),

AAA/AAA–Lawson, all superior to existing rational approximations.

• * Rational best approximations to eiωx = Unitary rational best approximations?

• * Observed twice faster convergence than Padé. Proof for non-asymptotic ω?

• * Does modified BRASIL converge to best approximation?

• Optimal Control. [5] Foroozandeh & S. 2022. Optimal control of spins by Analytical Lie

Algebraic Derivatives, Automatica. ESCALADE doi:10.17632/8zz84359m5. [6] Goodwin,

Foroozandeh & S. 2022. Adaptive optimal control of entangled qubits, Science Advances.

QOALA github.com/superego101/qoala. [7] Sherzad, Chen, Foroozandeh & S., in prep.

• Compute analytic gradients using Lie algebraic techniques.

• Hessian factorization reduces cost from O
(
N2
)

to O(N), x20− 600 speedup.

• Use cheaper method far from optima, switch adaptively.

• * Are pulses robust under timing and amplitude imperfections? 31
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