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What is Hamiltonian simulation?

Solution of the Schrédinger equation,
00 = H(t)w,  HE)' =H(),  v(e) e .
Feynman, R. P. Simulating physics with computers. Int J Theor Phys 21, 467-488 (1982).

the real difficulty is this: If we had many particles, we have R particles,, for
example, in a system, then we would have to describe the probability of a
circumstance by giving the probability to find these particles at points
X\, X5,...,Xg at the time ¢. That would be a description of the probability of
the system. And therefore, you’d need a k-digit number for every configura-
tion of the system, for every arrangement of the R values of x. And
therefore if there are N points in space, we’d need N® configurations.

n-body problems

e PDE, ¢ € CV" after spatial discretisation with N/ points in each direction,

e ODE, 1) € C*" for 2-level systems (e.g. spin systems).


https://doi.org/10.1007/BF02650179

Why quantum algorithms for Hamiltonian simulation?

4. QUANTUM COMPUTERS—UNIVERSAL QUANTUM
SIMULATORS

The first branch, one you might call a side-remark, is, Can you do it
with a new kind of computer—a quantum computer? (I'll come back to the
other branch in a moment.) Now it turns out, as far as I can tell, that you
can simulate this with a quantum system, with quantum computer elements.
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e Linear growth in number of qubits vs exponential in classical computing
e Simple circuits with Trotterisation (no auxiliary qubits)
e Subroutine in quantum algorithms — QPE (Kitaev 95), HHL (Harrow, Hassidim, Lloyd 09)

e Every gates has underlying Hamiltonian = every quantum circuit is HS



Example: spin systems

e A uniquely quantum phenomenon that has no classical counterpart.
e A type of intrinsic angular momentum - the particle is not rotating.
e Makes a quantum particle behave like a tiny magnet with a North pole

and a South pole.

p=1(+s-o)eC>?

s€]R3,

OOSGOSY,
s
a§ g and o = (X, VY, 2)
SRR

are 2 X 2 Pauli matrices.

O0%LS

e Responsible for ferromagnetism.
e The phenomenon that powers
e magnetic resonance imaging (MRI)

e spintronics
e quantum computing

e Suspected to be involved in detection of Earth’s magnetic field by birds

(quantum biology).



Quantum computing comes home

For n interacting spins, state space is exponentially large, p € c¥'x?
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However, requires linear growth in qubits.

Resurgence of interest in quantum algorithms for Hamiltonian simulation.

Berry et al. 15, Low & Chuang 17, 19, Low & Wiebe 18, Smith et al. 19, Kieferova et al. 19,
Berry et al. 20, Chen et al. 21, Haah et al. 21, Jin & Li 21, Jin et al. 21, Dong et al. 21,22, An et
al. 22, Watkins et al. 22, Mizuta et al. 23,...

Hamiltonian simulation of two-level systems is among early candidates for

demonstrating quantum advantage. (Childs et al. 18, Seetharam et al. 21).

Recent claim by IBM (using their Eagle processor, 14 June 2023):

® Kim, Eddins, Anand, Wei, van den Berg, Rosenblatt, Nayfeh, Wu, Zaletel, Temme &
Kandala (2023), ‘Evidence for the utility of quantum computing before fault tolerance’,

Nature 618, 500-505.
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Used Trotter splitting for an Ising chain.




The Hamiltonian

1
H(E) = e()'s + §STCS
N——
Hss(t) Hiy
. [ 1 . a,f
= Y Y d@a+;d Y Glab
k=1 ae{X,Y,Z} J.k=la,Be{X,Y,Z}

where ay acts on kth spin only,

=18 -0l a /e el cC™,
—_— N Y——

n—k times kth k—1 times

and a = X, Y, Z are Pauli matrices,

) ) )

Two-level systems: Ising chains, Kitaev models, NMR/ESR, qubits (spin, superconducting, ...)



Time-independent Hamiltonian — classical Trotterisation algorithms

Oru= Au, u(0)= uo,

exact solution given by matrix exponential

o8 = epAin=" (t:")k -
k=0 :

Hamiltonian simulation:

A = —ih(e'S + %STCS) (1)
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Oru= Au, u(0)= uo,

exact solution given by matrix exponential

2 (tA)*
u(t) = exp(tA)uo = Z ( k!) uo.
k=0
Hamiltonian simulation:
A = —ih(e'S + %STCS) (1)

For non-interacting spins, since su(2) is spanned by iX,iY,iZ and
X,Y]=iz, [Y,Z]=iX, [Z,X]=1Y,

can compute exponential analytically
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Trotterisation: For —iH = A + B we need to split
exp(h(A + B)) = e"e"® + o(/#)



Time-independent Hamiltonian — quantum Trotterisation algorithms

Trotterisation:
q X Y z q X B Y s %
= + + = —ih —ih 2
ih(HY+H " +HE) ihH ihH ihH O(' )

where 1
H =e'S* + 5S‘”CM s®, ae{X,Y, 2},

efih'l-l(Y Heflhei ap H H efth “ ajak

Jj=1 k=j+1

and

computed exactly using n single-qubit gates and (’)(nQ) coupling gates.
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Trotterisation <> Splitting methods for matrix exponential

If e and e"® are easier to compute, approximate ehlA+B) by

splitting error name stages

eMehB (@) (hz) Trotter 2


https://link.springer.com/article/10.1007/s10208-013-9182-8

Trotterisation <> Splitting methods for matrix exponential

If e and e"® are easier to compute, approximate ehlA+B) by
splitting error name stages
eMehB O(hz) Trotter 2
Lig ha ins 3
e2""eMe2 o(h*) Strang 3
e?MBehhenhB | ebnhA | gahBebihAeahB 2Pty Classical — O(27)
hp hg 2 " hg h
esfez2Be3(MM+5lIABLEDg2B664 O(h**')  Compact  O(2°)
h h 8 5) 3] h h .
e2Be2eM ReM e Re3463 8 O(h**1)  Asymptotic  O(p)
Yoshida 1990, Murua & Sanz-Serna 1999, Chin & Chen 2002, McLachlan & Quispel 2002, Blanes, Casas & Murua 2008, Chartier &

Murua 2009, ... Asymptotic (Zassenhaus) Bader, Iserles, Kropielnicka, & S. 2014, Found. Comp. Math.


https://link.springer.com/article/10.1007/s10208-013-9182-8
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Chen, Foroozandeh, Budd & S. 2023. Quantum simulation of highly-oscillatory many-body

Hamiltonians for near-term devices, submitted
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IBM paper appeared on 14 June 2023.

Classical algorithms appeared on 26 and 28 June 2023.

e Tindall, Fishman, Stoudenmire & Sels, ‘Efficient tensor network simulation of IBMs kicked
Ising experiment’

e Begusi¢ & Chan, 'Fast classical simulation of evidence for the utility of quantum computing
before fault tolerance’. Computed on a single core of a laptop!

9 Dulwich Quantum Computing
@DulwichQuantum

At least 7 articles so far have reproduced the @/BM computation
classically:
arxiv.org/abs/2306.14887
arxiv.org/abs/2306.15970
arxiv.org/abs/2306.16372
arxiv.org/abs/2308.01339
arxiv.org/abs/2308.03082
arxiv.org/abs/2308.05077
arxiv.org/abs/2308.09109

6:19 PM * Aug 21, 2023 - 17.3K Views

11



What should we expect from quantum Hamiltonian simulation?

BQP (bounded-error quantum polynomial time)

Class of decision problems solvable by a quantum computer in polynomial time,
with an error probability of at most 1/3 for all instances.

P C BQP C PSPACE
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What should we expect from quantum Hamiltonian simulation?

BQP (bounded-error quantum polynomial time)

Class of decision problems solvable by a quantum computer in polynomial time,
with an error probability of at most 1/3 for all instances.

P C BQP C PSPACE

P < BQP < PSPACE is not known.

The only ‘definitive’ proof of quantum ‘supremacy’ (in Hamiltonian simulation
or otherwise) is to show BQP # P.

4 PSPACE problems \

NP problems

12



Computing the matrix exponential

C. Moler & C. V. Loan, Nineteen Dubious Ways to Compute the Exponential of a Matrix,
Twenty-Five Years Later, SIAM Review (2003).

Splitting, Diagonalisation, Scaling and Squaring

Asymptotic Approximate e on spectrum Iterative
z—0 z € [a, b] C 0(A) Use A and g
Taylor Chebyshev
Polynomial Dkeo Zk—‘: Jo(i) +23 7%, i Ji(—1) Tk(2) Lanczos
Padé
1,,1.2
Rational H%Zilfz ? Rational Krylov
11—z %2

Qubitization (Low & Chuang 2019) based on Chebyshev.

13
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|f(ix)|=1 xeR = f(iH) is unitary
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Qubitization (Low & Chuang 2019) based on Chebyshev
Unitarity: |exp(ix)|= 1, exp maps imaginary axis to unit circle.
Since o(iH) C iR,
|f(ix)|=1 xeR = f(iH) is unitary
No non-constant polynomial method can be unitary. Proof: coercivity.

13
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Why care about unitarity?

Schrédinger equation

Osu = —iHu, u(0) = o, H" = H,
u(t) = e itH
E(t) := (u(t), Hu(t)) = (u(0), Hu(0)) = E(0) energy conservation
(u(®), v(t)) = (u(0), v(0)) = |lu(®)ll, = llu(O)ll, =1

unitary evolution mass or probability conservation

exp maps Lie algebra il € su(n) to Lie group e~ € U(n).

14



Why care about unitarity?

Schrédinger equation

O¢u = —iHu, u(0) = uo, H* = H,
u(t) = e itH
E(t) := (u(t), Hu(t)) = (u(0), Hu(0)) = E(0) energy conservation
{u(®), v(t)) = (u(0), v(0)) = [|u(®)ll, = llu(O)ll, =1

unitary evolution mass or probability conservation

exp maps Lie algebra il € su(n) to Lie group e~ € U(n).

These properties are also desired from numerical approximations.

efrl+4z m = (I —ihH)ug F.E. [|tn]l2— oo

ef L (I +itH)uy = w B.E. [[un|l2— O

o~ $HE (I+i(h/2H) = (I —i(h/2)H) u TR unllo= o]l
1+z/2

cay(z) = -7 maps Lie algebra it € su(n) to Lie group e 't € U(n).

Wave, KdV, NLS, Pauli, Dirac, Liouville—=von Neumann, Linblad, MCTDHF, CCSD, TDDFT, ...

14



Uniform approximation with AAA & AAA-Lawson

e AAA. Nakatsukasa, Sete & Trefethen. The AAA algorithm for rational approximation, SIAM
J. Sci. Comput., Vol. 40, Iss. 3 (2018).

o AAA-Lawson. Nakatsukasa & Trefethen. An algorithm for real and complex rational
minimax approximation, SIAM J. Sci. Comput., Vol. 4, Iss. 5 (2020).

Error in approximation of e
(Padé vs AAA—-Lawson)

\ AAA and AAA-Lawson methods are adaptive al-
° gorithms that can produce rational approximants

with uniform accuracy over a specified interval or
test nodes xj.

15
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Error in approximation of e

(Padé vs AAA—-Lawson)
AAA and AAA-Lawson methods are adaptive al-
gorithms that can produce rational approximants

with uniform accuracy over a specified interval or
test nodes xk

X 108
o
e i w;
4
! 10710 (X) /Z )
= = 1 X =Y X =
T o N vz
n(x) d(x)
1071
linearize and minimize
1078

2 - 1/2
ILwllz= (3= meln() — ™ d(x) )
k=1

1/2 %k —o'Y

Computed using SVD of Loewner matrix, Ly = (1), R
J

, and picking w as the right singular

vector corresponding to the smallest singular value.

15


https://epubs.siam.org/doi/10.1137/16M1106122
https://epubs.siam.org/doi/10.1137/16M1106122
https://epubs.siam.org/doi/10.1137/19M1281897
https://epubs.siam.org/doi/10.1137/19M1281897

Unitarity of AAA & AAA-Lawson

Loewner matrix based rational approximations and interpolations are unitary.

Jawecki & S 2023. Unitarity of some barycentric rational approximants, IMA J. Num. Anal.

Includes Antoulas & Anderson 1986, Mayo & Antoulas 2007, NST 2018 (AAA), NT 2020 (AAA-Lawson), JS

(submitted) (interpolation at Chebyshev nodes, modified BRASIL algorithm, modified AAA-Lawson), .

16
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Modified AAA and AAA-Lawson (JS 23) ensures unitarity to machine precision
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Non-uniform and split spectrum approximation

Wavefunction centred around two different energy levels

z —Ap)2 /202
o(x) = Y1(x) + $a(x), () = D Guw(x), guo=e W2
k=0

Error in approximation of e
(AAA-Lawson)

error of AAA approximation of exp(itx) on two intervals, degree m=31

10-12

10-13

17



Non-uniform and split spectrum approximation

Wavefunction centred around two different energy levels

z —Ap)2 /202
o(x) = Y1(x) + $a(x), () = D Guw(x), guo=e W2
k=0

Error in approximation of ¢! Error in matrix approximation r(—ihH)ug

(AAA-Lawson) ((31,31) AAA-Lawson vs Padé)
error of AAA approximation of exp(itx) on two intervals, degree m=31
"
10 1071
X 10 A
) O 103
| 10 |
Lewnl — 1075
= 107 X )
< NoJ !
= e !
1070 1077 i
1071 10~ ‘v‘
!
Lo '
101 |
[ 100 200 300 400 500 600
x 0 100 200 300 400

number of inverses
Jawecki & S. in preparation
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Best approximation

Approximating f € C([a, b]; R) in P,[a, b]
e Best approximant p* € P, exists & unique
If = P lloo=inf{||f — plloc : p € Pa},
e Chebyshev equioscillation theorem
F(x) = p" () = (1) If = plloo, ¢ €{0,1}
e Remez minimax algorithm
e Find points {x;} of local maximum error |f(x) — plK(x)|.

e Stop if equioscillation property satisfied.
e Otherwise, solve for f(x;) — plk*1(x;) = (~1YE

18
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Best approximation

Approximating f € C([a, b]; R) in P,[a, b]
e Best approximant p* € P, exists & unique
If = P lloo=inf{||f — plloc : p € Pa},
e Chebyshev equioscillation theorem
F(x) = p" () = (1) If = plloo, ¢ €{0,1}
e Remez minimax algorithm
e Find points {x;} of local maximum error |f(x) — plK(x)|.

e Stop if equioscillation property satisfied.
e Otherwise, solve for f(x;) — pl*+U(x;) = (~1YE

Motivates AAA-Lawson minimax algorithm [NT20] for approximating
feC(l CC;C)in Ryl = {g D p,qE 73',,} (or in Barycentric forms).

e Gives good approximants in practice (typically), but ...
e No best approximation results for complex-valued rational approximation,

{p € Pn : ||p|loo= 1} is compact, {r € R : ||r|loo= 1} is not compact,
e No equioscillation property in C.
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Equioscillation

Figures from [NT20]

« 10710 0.007 sec « 1010 0.010 sec

(left) f(z) =e*on {z € C : |z|=1}

(right) f(z) = Ai(z) on z € [—10, 10] , . ]

deviation f(z) — r(z) & max error ||[f — r|| — |

No equioscillation!

x10710
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Equioscillation

Figures from [NT20]

« 10710 0.007 sec « 1010 0.010 sec

(left) f(z) =e*on {z € C : |z|=1}

(right) f(z) = Ai(z) on z € [—10, 10] , . ]

deviation f(z) — r(z) & max error ||[f — r|| — |

No equioscillation!
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o
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o
>

f(ix) = %, xe[-1,1]
18 June (left), T. Jawecki
28 June (right), N. Trefethen

Rose curves with 2n petals. equioscillation?
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Equioscillation

Figures from [NT20] 10 0,007
1010 0.007 sec

1010 0.010 sec

(left) f(z) =e*on {z € C :|z|=1} ]
(right) f(z) = Ai(z) on z € [—10, 10] , m

deviation f(z) — r(z) & max error ||[f — r|| — |

No equioscillation!

IS
o
B}
o
>

f(ix) = %, xe[-1,1]
18 June (left), T. Jawecki
28 June (right), N. Trefethen

Rose curves with 2n petals. equioscillation?

Let r(ix) = e'6*), where g(x) is phase

s erorin phase, degree k=7 w=10 approimation rto exp(t), degree k=7 w=10

Optimality <= phase equioscillates “‘ TR “‘
j (M NN m\m
xj)—wx; = (1Y max Xx) — wx|. LIV ) L M‘\ \\
g(x) j (=1) xe[—l,l]‘g() ‘ . ‘M\\““w“‘\““*‘mi‘\“ \H‘ HM
|r(ix;) — e |= ||r — exp(w-)]| ‘H | \‘;‘ | ‘M“ || ‘ ‘ ‘ H
IR \/ 1B }
Zeros of phase & approx error coincide. L U ' ”/ ‘/‘ JU 1L

19



Best (unitary rational) approximation

Jawecki & S 2023. Unitary rational best approximations to the exponential function, submitted.
Theorem. For w € (0, (n+ 1)7), there exists a unique unitary best

approximation r € U, i.e.,

llr — exp(w-)|l=inf [[u — exp(w-)], [fll:= sup |f(ix)l,
u€U, 1,1]

x€|

whose phase error equioscillates at 2n + 2 points, where max approx error is
achieved. Moreover, r has minimal degree n, and distinct poles.

20
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Best (unitary rational) approximation

Jawecki & S 2023. Unitary rational best approximations to the exponential function, submitted.
Theorem. For w € (0, (n+ 1)7), there exists a unique unitary best

approximation r € U, i.e.,

lIr — exp(w-)l|= inf [lu—exp(w)ll,  [Ifl:= sup [f(ix)],

xe[—1,1]

whose phase error equioscillates at 2n + 2 points, where max approx error is
achieved. Moreover, r has minimal degree n, and distinct poles.

Superlinear convergence. For w < 1.47(n+1/2),

(n! )2w2n{1

min |lu — exp(w)]|< (2n)! (2n+1)!

(proof via Pade),
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Best (unitary rational) approximation

Jawecki & S 2023. Unitary rational best approximations to the exponential function, submitted.
Theorem. For w € (0, (n+ 1)7), there exists a unique unitary best

approximation r € U, i.e.,

lIr — exp(w-)[|= inf [|u—exp(w)ll,  [[f]:= sup ]\f(iX)\~

xe[—1,1
whose phase error equioscillates at 2n + 2 points, where max approx error is
achieved. Moreover, r has minimal degree n, and distinct poles.
Superlinear convergence. For w < 1.47(n+1/2),

(n! )2w2n+1

min |lu — exp(w)]|< (2n)! (2n+1)!

(proof via Pade), and in the limit w — 0%,

. 3 B 2(n!)? w2+l 2n42 +
minllu = expw)ll= (2n)!(2n+1)!(§> + 0™, w— 0%

(proof via interpolation at Chebyshev points), twice as fast as Padé.
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Poles, w — 0", w — (n+ 1)7—

x‘.
5 e
= : X -
3 | i
= 0 :
3 : e - = x= =%
_57 )(@
e
T T T T
0 2 4 6
w&;(w)

In the limit w — 0", poles converge to poles of Padé.

In the limit w — (n+ 1)7—, poles approach i&;, where & = —1+2j/(n+ 1) for
j=1,...,n, within the right-half complex plane.
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Poles, w — 0", w — (n+ 1)7—

X <y
51 ®
= : X -
T a
= 0 e
3 e - = x= =%
_57 )(@
-
T T T T
0 2 4 6
w&;(w)

In the limit w — 0", poles converge to poles of Padé.

In the limit w — (n+ 1)7~, poles approach i&;, where &;
J=1,...,n, within the right-half complex plane.

—142j/(n+1) for

A-stability. Poles of best approximants are in right half plane and
[r(z)|< 1, for z € C with Re(z) < 0.

Relevant for non-Hermitian matrices/operators (e.g. open systems).

Time-symmetric.

r(—ix) = r(ix)™', x€R.

21



Interpolation and equioscillation points, w — 0%, w — (n+ 1)7~

jég 10 O
2

=% O

5 08+

2

<
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L 0.6

=

o

5]

% 0.4 -

= O

RS

= 0.2 5O
= W
o

g

o T e —)

In the limit w — 07, interpolation points converge to Chebyshev nodes.

In the limit w — (n+ 1)7~, interpolation points and equioscillation points
converge to uniformly distributed points. Phase error approaches sawtooth
function. 22



Three new algorithms. Interpolation at Chebyshev points, modified AAA-Lawson and BRASIL
algorithms — latter two candidates for best approximation (seem to display equioscillatory

behaviour).
w=4

10° 4 ¥ B

1073 b

1076 b

error

10797 b

10712 - -

2 5 8 11 14

100 -
1073 -

10—6 -

error

1079 -

10—12 ,

10 20 30 40

Figure 1: [new] unitary best approximation (M), error estimate (dashed, +), [new| rational
interpolant at Chebyshev nodes (1>), Padé approximation (o), Padé error bound (dashed, x),

polynomial Chebyshev approximation (V), rational Chebyshev approximation (A), .
23



How to compute the matrix exponential?

C. Moler & C. V. Loan, Nineteen Dubious Ways to Compute the Exponential of a Matrix,
Twenty-Five Years Later, SIAM Review (2003).

Asymptotic | Approximate e on spectrum Iterative
z—0 z € [a, b] C o(A) Use A and up
Taylor Chebyshev
Polynomial PP % Jo(i) + 2370, i Uk(—1) Tu(2) Lanczos
Padé
q (LA 2 0 g g q
Rational FH e unitary best approximations | Rational Krylov
2 12

Other techniques: Diagonalisation, Spectral methods, Scaling and Squaring, Splitting

AAA [NST 18], AAA-Lawson [NT 20], their unitary modifications [JS 23], and three new
algorithms [JS submitted).

e Jawecki & S. 2023. Unitarity of some barycentric rational approximants, IMA J. Num. Anal.

e Jawecki & S. 2023. Unitary rational best approximations to the exponential function,
submitted.

e Jawecki & S., in preparation.
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Driven systems — Is Magnus expansion DoA?

The solution to u(t) = A(t)u(t), A(t) = —iH(t),
u(h) = exp (O(h)) to,
where ©(h) is the Magnus expansion [Magnus 54],
h hope
o(h) = ./o A(€)de—3 '/0 ./o [A(C), A(&)] d¢d& <«— Fourth order
hore e
[ [Fa00.140, A axac ag

1 h ¢ < -
+1 /0 /0 /0 [LAG), Q)] A©)] dx d¢ dé + ...

A =-HE, HO=Y ¥ dOa+t;> X Glan

k=1 a€{X,Y,Z} Jk=1a,B€{X,Y,Z}

O(n) terms |C| S(D(HZ) terms
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Driven systems — Is Magnus expansion DoA?

The solution to u(t) = A(t)u(t), A(t) = —iH(t),
u(h) = exp (O(h)) wo,
where ©(h) is the Magnus expansion [Magnus 54],

o(h) = ./Oh.A(ﬁ)d&f% '/Oh./O&[A((),A(O] d¢d§¢ <— Fourth order

h e re
[ [Fa00.140, A axac ag

h r& r¢
+%/0/0/0[[A(x)~4(<)]»%1(5)] dxd¢de + ...

A =-me, HO=Y ¥ gOat;> X Glan

k=1 a€{X,Y,Z} Jik=lo,BE{X,Y,Z}
O(n) terms \C\SO(#) terms
Issue: A has O(|C|) = O(n?) terms. Does O, have O(|C|?) = O(n*) terms?

A standard method for classical computers, infeasible for quantum computers.
Instead, other approaches used: Dyson series (Kieferova et al. 2019), time-ordered operators (Watkins et al. 2022),
L1 norm scaling (Berry et al. 2020), permutation expansion (Chen et al. 2021), slowly varying Hamiltonians (Haah

et al. 2021), interaction picture (Low & Wiebe 2018), Floquet approach (Mizuta et al. 2023)
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Driven systems — Is Magnus expansion DoA? No!

Theorem (Fourth order Magnus based circuit)

Tg iTs_ibsTc s uTs
e

if2 S =il 55

!
elh u el
reuse 4th order Trotterised circuit

Chen, Foroozandeh, Budd & S. 2023. submitted

For two controls: |keda, Abrar, Chuang & Sugiura 2023. Quantum.

=e%2 4 O(hs)

two single-gate layers

H(tn) + Trotter
Magnus order 2 + Strang
Proposed method
CF42, scipy
Autonomized Yoshida 4th

Strang for time-indep

—1 | %Y .'§\...
10 v o W, e
S \, o
g \, AN
SN \ o ~
- \ "
_ o \
107" A i
\ R —
N
5 \ |
1077 A
T T T TTTT T T TTTI T T TTTT T TTTTT T TTTTTIT |
1 2 3 4 5 6 T
10 10 10 10 10 10°  (.005

circuit depth

In fact, Magnus is much better than all other methods!

Time-dependent problems of practical interest are MUCH harder!

1072
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Driven systems — optimal control

Maximize fidelity:
0" = argmax F(0)
0

Fidelity functions
F(0) = F(U(T:0))
where state of system is p(t) = U(t;0)po.

= initial state O-=======-@ final state

state-to-state gate design
f(X) = Re [Tr (o Xpo)] f(X) = Re [Tr (U;rgetxﬂ
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Driven systems — optimal control

Maximize fidelity:
0" = argmax F(0)
0

Fidelity functions
F(0) = F(U(T:0))
where state of system is p(t) = U(t;0)po.

= initial state O-=======-@ final state

state-to-state gate design
F(X) = Re [Tr (o' Xpo)] f(X) = Re [Tr (umgetx)}

Local optimization: need gradients

oF oU(T;0)
20 = = Df(U(T; 0))709
and Hessians.
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Analytic gradients — uncoupled

e No dissipation
e Piecewise constant
U(T;0) =UnUyn_1---UUs,  with U,=e "7, s,:= he(t,).

We can store intermediate propagators
L,, = U/\/UN_l.,.U,,7 R,, = U,,U,,71...U17 O(N)

to compute gradients cheaply and exactly

ou _, 90U, Ry, OUn _ iy ({D dsn } _0>7

— Lin+1 - n

005,k 005,k 005 00
o (—8,)P ) 0 —Sn,z Sn,y

D, = . =1+ cSn+ @S, Sp = Sn.z 0 —Sn,x .
p=0 (p+1)! =g g 0

28



Analytic Hessian — uncoupled

The typical approach for computing the Hessian involves computing and storing
Mo i=UsUs-t1 ... UniUn.  O(N?)

. 2 '
and use for computing % = Ln+1§T[j"kl\~[n 1.m41g%m’"ij—1-
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Analytic Hessian — uncoupled

The typical approach for computing the Hessian involves computing and storing

Mam := UnUn—t - .. Ums1Un. O(NQ)

. 2 : .
and use for computing % = Lpt1 8897[”}11\'[” Lmug%m’"ij_l. We exploit

the unitarity of Uy, i.e. U;Uyx =/, to note that
Mnm = (Un...Uns1)*Un ... UpsiMp mUm—1 ... Ug(Upy ... Up)*
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Analytic Hessian — uncoupled

The typical approach for computing the Hessian involves computing and storing

Mam := UnUn—t - .. Ums1Un. O(NQ)

. 2 : .
and use for computing % = Lpt1 8897[”}11\'[” Lmug%m’"ij_l. We exploit

the unitarity of Uy, i.e. U;Uyx =/, to note that
Mpm=(Un...Uns1)Un...UpnpaMp mUpm_1 ... Ur(Um_y ... Us)* = LEURS,

29


https://doi.org/10.1016/j.automatica.2021.109611
https://data.mendeley.com/datasets/8zz84359m5
https://doi.org/10.1103/PhysRevResearch.5.L012042

Analytic Hessian — uncoupled

The typical approach for computing the Hessian involves computing and storing
Mo i=UsUs-t1 ... UniUn.  O(N?)
. 2 : .
and use for computing % = Lpt1 889—%1\'[" 1"”‘16(;%;}}{"’_1' We exploit
the unitarity of Uy, i.e. U;Uyx =/, to note that

Mnm= (Un...Un1)*Un... UptiMp mUm_s . . .Ul(Um,l ...U1)" = L;UR},

. ) U, T * * OUpm
so that entries of the Hessian can be computed as Ln+1 20, L ~UR;, 50, R
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Analytic Hessian — uncoupled

The typical approach for computing the Hessian involves computing and storing
Mo i=UsUs-t1 ... UniUn.  O(N?)

2 0
Y Rm—1. We exploit

and use for computing W = Lnp1 22 89 Mn 1,m+1 gf
the unitarity of Uy, i.e. U;Ux =/, to note that

Mpm = (Un...Unt1)"Un... Upp1 My mUp—1 .. ‘U1(Um71 ...U1)" = L,UR,,
S LaUR:, 55/m R

so that entries of the Hessian can be computed as L1 -2 20,

Pulse duration, 7' (ms) Time steps, N Time slice width, At (us)
10° 10! 10! 10? 10* 10?
T T T

%1000
A ] N =128
acc-ESCALADE:
— VF
—vF

%100
F

y acc-AUXMAT:
L radient | { —urF
; . —vF
F

Speedup

x10

gradtent 7

Tgradient

10! 10% 10°

=
10% 10! 10°
Time steps, N

x1
10° 10!
Pulse duration, T (ms)

Time slice width, At (us)

Speedup: x2 — 10 fidelity, x4 — 30 gradient, x20 — 600 Hessian.

Foroozandeh & S. 2022. Automatica. ESCALADE doi:10.17632/82z84359m5

Goodwin & Vinding 2023. Phys. Rev. Res. 29
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Coupling, dissipation & adaptive optimal control

Liouville—von Neumann equation, piecewise constant,

Orp = L(t;0) p, L,(0) = —iade, —iadm,, +r
. —_————
£[n1](9) 2l

Splittings S(1), S(2), - - -, Sy = U(T; 6) with increasing accuracies,

K
[1] [2]
U, = ehﬁn(ﬁ) ~ H ehakﬁ,, 0) ehbkz:

k=1 uncoupled, analytic grad

Move from Sy to Sie11) when |Foy — Fory| < kx|l = Fo

30

4-Qubits’

i
il 3-Qubits
3 e —

2-Qubits

3-spin-swap

2-spin-swap

. .
10! 10% 10* 10*
Wall-clock time (s) Fidelity Wall-clock time (s)

L
0 1 2 3 i
0% 9% 99.9% 99.99% 99.909% 10 10 10 10 10 0%  99%  99.9% 99.90% 99.990%

Fidelity

Goodwin, Foroozandeh & S. 2022. Science Advances. QOALA github.com/superego101/qoala
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Takeaways & Open Problems

e Quantum Computing. [1] Chen, Foroozandeh, Budd & S. 2023. Quantum simulation of
highly-oscillatory many-body Hamiltonians for near-term devices, submitted
e No good reason to use Trotter (used in IBM paper) instead of Strang.
e Practical time-dependent problems are much harder, high order methods required.
e Magnus methods are not DoA, in fact, lead to shortest circuits even for 10! accuracy.
.

* Better splittings? Better commutator-free methods?

e Approximation Theory. [2] Jawecki & S. 2023. Unitarity of some barycentric rational
approximants, IMA J. Num. Anal. [3] Jawecki & S. 2023. Unitary rational best
approximations to the exponential function, submitted. [4] Jawecki & S., in prep.

e Loewner based algorithms (incl. AAA) conserve unitarity, energy, norm

e Unitary rational best approximations exist, unique & phase equioscillates

e Three new algorithms (Cheb. interp., AAA-Lawson at Cheb., modified BRASIL),
AAA/AAA-Lawson, all superior to existing rational approximations.

e * Rational best approximations to €'“* = Unitary rational best approximations?

e * Observed twice faster convergence than Padé. Proof for non-asymptotic w?

e * Does modified BRASIL converge to best approximation?

e Optimal Control. [5] Foroozandeh & S. 2022. Optimal control of spins by Analytical Lie
Algebraic Derivatives, Automatica. ESCALADE doi:10.17632/822z84359m5. [6] Goodwin,
Foroozandeh & S. 2022. Adaptive optimal control of entangled qubits, Science Advances.
QOALA github.com/superego101/qoala. [7] Sherzad, Chen, Foroozandeh & S., in prep.

e Compute analytic gradients using Lie algebraic techniques.

e Hessian factorization reduces cost from O(NQ) to O(N), x20 — 600 speedup.

e Use cheaper method far from optima, switch adaptively.

e * Are pulses robust under timing and amplitude imperfections? 31
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