top of page

PUBLICATIONS

T. Jawecki, P. Singh

Unitarity of some barycentric rational approximants

IMA Journal of Numerical Analysis [published online] drad066

2023

bib

G. Frasca-Caccia, P. Singh

Optimal parameters for numerical solvers of PDEs

Journal of Scientific Computing, 97, 11

2023

bib

D. L. Goodwin, M. Foroozandeh, P. Singh

Adaptive optimal control of entangled qubits

Science Advances 8(49), eabq4244

2022

bib

W. Auzinger, J. Dubois, K. Held, H. Hofstätter, T. Jawecki, A. Kauch, O. Koch, K. Kropielnicka, P. Singh, C. Watzenböck

Efficient Magnus-type integrators for solar energy conversion in Hubbard models

Journal of Computational Mathematics and Data Science, 2, 100018

2022

bib

M. Foroozandeh, P. Singh

Optimal control of spins by Analytical Lie Algebraic Derivatives

Automatica, 129, 109611.

2021

bib

W. Auzinger, H. Hofstätter, O. Koch, K. Kropielnicka, P. Singh

Time adaptive Zassenhaus splittings for the
Schrödinger equation in the semiclassical regime

Applied Mathematics and Computation, 362, 124550

2019

bib

M. Condon, A. Iserles, K. Kropielnicka, P. Singh

Solving the wave equation with multifrequency oscillations

Journal of Computational Dynamics, 6(2), 239–249.

2019

bib

P. Singh

Sixth-order schemes for laser–matter interaction in the Schrödinger equation

Journal of Chemical Physics,150 (15),154111.

2019

bib

A. Iserles, K. Kropielnicka, P. Singh

Solving Schrödinger equation in semiclassical regime with highly oscillatory

time-dependent potentials

Journal of Computational Physics, 376, 564–584.

2019

bib

A. Iserles, K. Kropielnicka, P. Singh

Compact schemes for laser-matter interaction in Schrödinger equation

Computer Physics Communications, 234, 195–201.

2019

bib

T. Allie-Ebrahim, V. Russo, O. Ortona, L. Paduano, R. Tesser, M. Di Serio, P. Singh, Q. Zhu, G. Moggridge, C. D’Agostino

A predictive model for the diffusion of a highly non-ideal ternary system

Physical Chemistry Chemical Physics, 20, 18436–18446

2018

bib

A. Iserles, K. Kropielnicka, P. Singh

Magnus–Lanczos methods with simplified commutators for the Schrödinger equation

with a time-dependent potential

SIAM Journal of Numerical Analysis, 56(3), 1547–1569.

2018

bib

P. Bader, A. Iserles, K. Kropielnicka, P. Singh

Efficient methods for linear Schrödinger equation in the semiclassical regime

with time-dependent potential

Proceedings of the Royal Society A, 472(2193).

2016

bib

P. Bader, A. Iserles, K. Kropielnicka, P. Singh

Effective approximation for the semiclassical Schrödinger equation

Foundations of Computational Mathematics, 14(4) 689–720.

2014

bib

THESIS

P. Singh

High accuracy computational methods for the semiclassical Schrödinger equation

University of Cambridge.

2017

bib
bottom of page