
PUBLICATIONS
G. Frasca-Caccia, P. Singh



Optimal parameters for numerical solvers of PDEs
arXiv:2108.03459 [math.NA].
submitted
bib
M. Foroozandeh, P. Singh



Optimal control of spins by Analytical Lie Algebraic Derivatives
Automatica, 129, 109611.
2021
bib
M. Condon, A. Iserles, K. Kropielnicka, P. Singh



Solving the wave equation with multifrequency oscillations
Journal of Computational Dynamics, 6(2), 239–249.
2019
bib
W. Auzinger, H. Hofstätter, O. Koch, K. Kropielnicka, P. Singh
Time adaptive Zassenhaus splittings for the
Schrödinger equation in the semiclassical regime
Applied Mathematics and Computation, 362, 124550
2019
bib
P. Singh
Sixth-order schemes for laser–matter interaction in the Schrödinger equation
Journal of Chemical Physics,150 (15),154111.
2019
bib
A. Iserles, K. Kropielnicka, P. Singh
Solving Schrödinger equation in semiclassical regime with highly oscillatory
time-dependent potentials
Journal of Computational Physics, 376, 564–584.
2019
bib
A. Iserles, K. Kropielnicka, P. Singh
Compact schemes for laser-matter interaction in Schrödinger equation
Computer Physics Communications, 234, 195–201.
2019
bib
T. Allie-Ebrahim, V. Russo, O. Ortona, L. Paduano, R. Tesser, M. Di Serio, P. Singh, Q. Zhu, G. Moggridge, C. D’Agostino
A predictive model for the diffusion of a highly non-ideal ternary system
Physical Chemistry Chemical Physics, 20, 18436–18446
2018
bib
A. Iserles, K. Kropielnicka, P. Singh
Magnus–Lanczos methods with simplified commutators for the Schrödinger equation
with a time-dependent potential
SIAM Journal of Numerical Analysis, 56(3), 1547–1569.
2018
bib
P. Bader, A. Iserles, K. Kropielnicka, P. Singh
Efficient methods for linear Schrödinger equation in the semiclassical regime
with time-dependent potential
Proceedings of the Royal Society A, 472(2193).
2016
bib
P. Bader, A. Iserles, K. Kropielnicka, P. Singh



Effective approximation for the semiclassical Schrödinger equation
Foundations of Computational Mathematics, 14(4) 689–720.
2014
bib


THESIS
P. Singh
High accuracy computational methods for the semiclassical Schrödinger equation
University of Cambridge.
2017
bib